INFLUENCE OF POST-DANIAN SEA-LEVEL CHANGES AND VARIATIONS IN SEDIMENTATION RATE ON OVERPRESSURE BUILD UP IN THE CLAY-RICH OVERBURDEN IN THE DANISH SECTOR OF THE NORTH SEA CENTRAL GRABEN

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Ivanka Orozova-Bekkevold, Erik Skovbjerg Rasmussen, Niels Hemmingsen Schovsbo
{"title":"INFLUENCE OF POST-DANIAN SEA-LEVEL CHANGES AND VARIATIONS IN SEDIMENTATION RATE ON OVERPRESSURE BUILD UP IN THE CLAY-RICH OVERBURDEN IN THE DANISH SECTOR OF THE NORTH SEA CENTRAL GRABEN","authors":"Ivanka Orozova-Bekkevold,&nbsp;Erik Skovbjerg Rasmussen,&nbsp;Niels Hemmingsen Schovsbo","doi":"10.1111/jpg.12835","DOIUrl":null,"url":null,"abstract":"<p>Overpressure build up in the clay-rich succession between sea floor and the top of the Chalk Group in the area around wells North Jens-1 and Fasan-1 in the Danish sector of the Central Graben, North Sea was examined by forward modelling. “Overpressure”, i.e. fluid pressure higher than hydrostatic pressure, is expressed here in terms of both the difference between pore pressure and hydrostatic pressure at a given depth and the ratio between these pressures. Pore pressure changes over time were estimated by numerical simulation of post-Danian depositional processes, incorporating sea level changes and variations in sedimentation rate. Results show that the deposition of the post-Danian (“overburden”) succession led to overpressure build up both in the overburden itself and in the underlying sediments (the so-called “underburden”). The largest estimated present-day overpressures (4.9-5.6 MPa, 23-26% above hydrostatic) occur at the base of the overburden, while an overpressure of up to 5.5 MPa was calculated to occur in the underburden. Variations in sedimentation rate appeared to have influenced the build-up of overpressure in the overburden, although no significant effect was found in the underburden.</p><p>The results indicate that more than 50% of the present-day overpressure in the overburden was generated in the last 5.3 million years, i.e. during the Pliocene and the Quaternary. When variations in sedimentation rate during the Miocene were included in the modelling calculation, this proportion increased to nearly 70%. A decrease in sedimentation rate in the mid-Miocene (Serravallian, 15-11.2 Ma) and the late Miocene (Messinian, 7.5-5.3 Ma) resulted in the dissipation of overpressures generated previously when the sedimentation rate was higher. About 60% of the overpressure generated in the Miocene developed during the Tortonian but only 14% during the Messinian.</p><p>Water depth appears to influence the overpressure magnitude. Sea level changes played a minor and short-lived role in overpressure build up. The influence of water depth was most pronounced when it was significantly greater than the thickness of the deposited sediments.</p><p>The method of overpressure estimation used in this paper may be a valuable alternative to methods based on porosity trend analysis which are widely used in the oil and gas industry. Both the methods used here and the results may be useful in subsurface evaluations related to carbon storage in the Danish Central Graben (e.g. project Green Sand).</p>","PeriodicalId":16748,"journal":{"name":"Journal of Petroleum Geology","volume":"46 2","pages":"191-217"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpg.12835","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Overpressure build up in the clay-rich succession between sea floor and the top of the Chalk Group in the area around wells North Jens-1 and Fasan-1 in the Danish sector of the Central Graben, North Sea was examined by forward modelling. “Overpressure”, i.e. fluid pressure higher than hydrostatic pressure, is expressed here in terms of both the difference between pore pressure and hydrostatic pressure at a given depth and the ratio between these pressures. Pore pressure changes over time were estimated by numerical simulation of post-Danian depositional processes, incorporating sea level changes and variations in sedimentation rate. Results show that the deposition of the post-Danian (“overburden”) succession led to overpressure build up both in the overburden itself and in the underlying sediments (the so-called “underburden”). The largest estimated present-day overpressures (4.9-5.6 MPa, 23-26% above hydrostatic) occur at the base of the overburden, while an overpressure of up to 5.5 MPa was calculated to occur in the underburden. Variations in sedimentation rate appeared to have influenced the build-up of overpressure in the overburden, although no significant effect was found in the underburden.

The results indicate that more than 50% of the present-day overpressure in the overburden was generated in the last 5.3 million years, i.e. during the Pliocene and the Quaternary. When variations in sedimentation rate during the Miocene were included in the modelling calculation, this proportion increased to nearly 70%. A decrease in sedimentation rate in the mid-Miocene (Serravallian, 15-11.2 Ma) and the late Miocene (Messinian, 7.5-5.3 Ma) resulted in the dissipation of overpressures generated previously when the sedimentation rate was higher. About 60% of the overpressure generated in the Miocene developed during the Tortonian but only 14% during the Messinian.

Water depth appears to influence the overpressure magnitude. Sea level changes played a minor and short-lived role in overpressure build up. The influence of water depth was most pronounced when it was significantly greater than the thickness of the deposited sediments.

The method of overpressure estimation used in this paper may be a valuable alternative to methods based on porosity trend analysis which are widely used in the oil and gas industry. Both the methods used here and the results may be useful in subsurface evaluations related to carbon storage in the Danish Central Graben (e.g. project Green Sand).

后丹麦海平面变化和沉积速率变化对北海中央地堑丹麦段富含粘土覆盖层超压形成的影响
北海中央地堑丹麦段North Jens‐1和Fasan‐1井周围海域海底和白垩岩群顶部之间富含粘土的层序中的超压积聚通过正演模型进行了检查。“超压”,即高于静水压力的流体压力,在这里用给定深度的孔隙压力和静水压力之间的差以及这些压力之间的比率来表示。孔隙压力随时间的变化是通过后达尼亚沉积过程的数值模拟估计的,包括海平面变化和沉积速率的变化。结果表明,后大年(“覆盖层”)序列的沉积导致覆盖层本身和下伏沉积物(所谓的“下伏层”)中的超压积聚。目前估计的最大超压(4.9-5.6 MPa,高于静水压23-26%)发生在覆盖层底部,而据计算,超压高达5.5 MPa发生在下覆盖层。沉积速率的变化似乎影响了覆盖层中超压的形成,尽管在覆盖层中没有发现显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Petroleum Geology
Journal of Petroleum Geology 地学-地球科学综合
CiteScore
3.40
自引率
11.10%
发文量
22
审稿时长
6 months
期刊介绍: Journal of Petroleum Geology is a quarterly journal devoted to the geology of oil and natural gas. Editorial preference is given to original papers on oilfield regions of the world outside North America and on topics of general application in petroleum exploration and development operations, including geochemical and geophysical studies, basin modelling and reservoir evaluation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信