Stability of neutral delay differential equations with applications in a model of human balancing

IF 2.6 4区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
A. Domoshnitsky, S. Levi, Ron Hay Kappel, E. Litsyn, R. Yavich
{"title":"Stability of neutral delay differential equations with applications in a model of human balancing","authors":"A. Domoshnitsky, S. Levi, Ron Hay Kappel, E. Litsyn, R. Yavich","doi":"10.1051/MMNP/2021008","DOIUrl":null,"url":null,"abstract":"In this paper the exponential stability of linear neutral second order differential equations is studied. In contrast with many other works, coefficients and delays in our equations can be variable. The neutral term makes this object essentially more complicated for the study. A new method for the study of stability of neutral equation based on an idea of the Azbelev W-transform has been proposed. An application to stabilization in a model of human balancing has been described. New stability tests in explicit form are proposed.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/MMNP/2021008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper the exponential stability of linear neutral second order differential equations is studied. In contrast with many other works, coefficients and delays in our equations can be variable. The neutral term makes this object essentially more complicated for the study. A new method for the study of stability of neutral equation based on an idea of the Azbelev W-transform has been proposed. An application to stabilization in a model of human balancing has been described. New stability tests in explicit form are proposed.
中立型时滞微分方程的稳定性及其在人体平衡模型中的应用
本文研究了线性中立型二阶微分方程的指数稳定性。与许多其他工作相比,我们方程中的系数和延迟可以是可变的。中性术语使这个研究对象在本质上更加复杂。基于Azbelev W变换的思想,提出了一种研究中立型方程稳定性的新方法。描述了在人的平衡模型中的稳定应用。提出了新的显式稳定性试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Modelling of Natural Phenomena
Mathematical Modelling of Natural Phenomena MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
5.20
自引率
0.00%
发文量
46
审稿时长
6-12 weeks
期刊介绍: The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues. Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信