The irreducible weak modules for the fixed point subalgebra of the vertex algebra associated to a non-degenerate even lattice by an automorphism of order 2 (Part 2)

Pub Date : 2023-03-27 DOI:10.2969/jmsj/89848984
K. Tanabe
{"title":"The irreducible weak modules for the fixed point subalgebra of the vertex algebra associated to a non-degenerate even lattice by an automorphism of order 2 (Part 2)","authors":"K. Tanabe","doi":"10.2969/jmsj/89848984","DOIUrl":null,"url":null,"abstract":"Let $V_{L}$ be the vertex algebra associated to a non-degenerate even lattice $L$, $\\theta$ the automorphism of $V_{L}$ induced from the $-1$ symmetry of $L$, and $V_{L}^{+}$ the fixed point subalgebra of $V_{L}$ under the action of $\\theta$. In this series of papers, we classify the irreducible weak $V_{L}^{+}$-modules and show that any irreducible weak $V_{L}^{+}$-module is isomorphic to a weak submodule of some irreducible weak $V_{L}$-module or to a submodule of some irreducible $\\theta$-twisted $V_{L}$-module. Let $M(1)^{+}$ be the fixed point subalgebra of the Heisenberg vertex operator algebra $M(1)$ under the action of $\\theta$. In this paper (Part $2$), we show that there exists an irreducible $M(1)^{+}$-submodule in any non-zero weak $V_{L}^{+}$-module and we compute extension groups for $M(1)^{+}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/89848984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $V_{L}$ be the vertex algebra associated to a non-degenerate even lattice $L$, $\theta$ the automorphism of $V_{L}$ induced from the $-1$ symmetry of $L$, and $V_{L}^{+}$ the fixed point subalgebra of $V_{L}$ under the action of $\theta$. In this series of papers, we classify the irreducible weak $V_{L}^{+}$-modules and show that any irreducible weak $V_{L}^{+}$-module is isomorphic to a weak submodule of some irreducible weak $V_{L}$-module or to a submodule of some irreducible $\theta$-twisted $V_{L}$-module. Let $M(1)^{+}$ be the fixed point subalgebra of the Heisenberg vertex operator algebra $M(1)$ under the action of $\theta$. In this paper (Part $2$), we show that there exists an irreducible $M(1)^{+}$-submodule in any non-zero weak $V_{L}^{+}$-module and we compute extension groups for $M(1)^{+}$.
分享
查看原文
2阶自同构与非退化偶格相关的顶点代数不动点子代数的不可约弱模(下)
设$V_{L}$是与非退化偶格$L$相关的顶点代数,$\theta$是由$L$的$-1$对称性引起的$V_{L}$的自同构,$V_。在这一系列的论文中,我们对不可约弱$V_{L}^{+}$-模进行了分类,并证明了任何不可约的弱$V_{L}^{+}$-模同构于某个不可约软弱$V_{L}$-模的弱子模,或同构于某一不可约$\theta$-扭曲$V_。设$M(1)^{+}$是Heisenberg顶点算子代数$M(2)$在$\theta$作用下的不动点子代数。在本文(第2$部分)中,我们证明了在任何非零弱$V_{L}^{+}$-模中都存在一个不可约$M(1)^{+}-子模,并且我们计算了$M(2)^{+}$的可拓群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信