The irreducible weak modules for the fixed point subalgebra of the vertex algebra associated to a non-degenerate even lattice by an automorphism of order 2 (Part 2)
{"title":"The irreducible weak modules for the fixed point subalgebra of the vertex algebra associated to a non-degenerate even lattice by an automorphism of order 2 (Part 2)","authors":"K. Tanabe","doi":"10.2969/jmsj/89848984","DOIUrl":null,"url":null,"abstract":"Let $V_{L}$ be the vertex algebra associated to a non-degenerate even lattice $L$, $\\theta$ the automorphism of $V_{L}$ induced from the $-1$ symmetry of $L$, and $V_{L}^{+}$ the fixed point subalgebra of $V_{L}$ under the action of $\\theta$. In this series of papers, we classify the irreducible weak $V_{L}^{+}$-modules and show that any irreducible weak $V_{L}^{+}$-module is isomorphic to a weak submodule of some irreducible weak $V_{L}$-module or to a submodule of some irreducible $\\theta$-twisted $V_{L}$-module. Let $M(1)^{+}$ be the fixed point subalgebra of the Heisenberg vertex operator algebra $M(1)$ under the action of $\\theta$. In this paper (Part $2$), we show that there exists an irreducible $M(1)^{+}$-submodule in any non-zero weak $V_{L}^{+}$-module and we compute extension groups for $M(1)^{+}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/jmsj/89848984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $V_{L}$ be the vertex algebra associated to a non-degenerate even lattice $L$, $\theta$ the automorphism of $V_{L}$ induced from the $-1$ symmetry of $L$, and $V_{L}^{+}$ the fixed point subalgebra of $V_{L}$ under the action of $\theta$. In this series of papers, we classify the irreducible weak $V_{L}^{+}$-modules and show that any irreducible weak $V_{L}^{+}$-module is isomorphic to a weak submodule of some irreducible weak $V_{L}$-module or to a submodule of some irreducible $\theta$-twisted $V_{L}$-module. Let $M(1)^{+}$ be the fixed point subalgebra of the Heisenberg vertex operator algebra $M(1)$ under the action of $\theta$. In this paper (Part $2$), we show that there exists an irreducible $M(1)^{+}$-submodule in any non-zero weak $V_{L}^{+}$-module and we compute extension groups for $M(1)^{+}$.