Automated system for identification of data distribution laws by analysis of histogram proximity with sample reduction

IF 0.1 Q4 INSTRUMENTS & INSTRUMENTATION
Olha Oliynyk, Y. Taranenko
{"title":"Automated system for identification of data distribution laws by analysis of histogram proximity with sample reduction","authors":"Olha Oliynyk, Y. Taranenko","doi":"10.24027/2306-7039.3.2021.241627","DOIUrl":null,"url":null,"abstract":"The error in the identification of the distribution law entails an incorrect assessment of other characteristics (standard deviation, kurtosis, antikurtosis, etc.). The article is devoted to the development of accessible and simple software products for solving problems of identifying distribution laws and determining the optimal size of a data sample. \nThe paper describes a modified method for identifying the law of data distribution by visual analysis of the proximity of histograms with a reduction in the sample size with software implementation. The method allows choosing the most probable distribution law from a wide base of the set. The essence of the method consists in calculating the entropy coefficient and absolute entropy error for the initial and half data sample, determining the optimal method for processing the histogram using visual analysis of the proximity of histograms, and identifying the data distribution law. The experimental data processing model makes it possible to take into account the statistical properties of real data and can be applied to various arrays, and allows to reduce the sample size required for analysis. \nAn automated system for identifying the laws of data distribution with a simple and intuitive interface has been developed. The results of the study on real data indicate an increase in the reliability of the identification of the data distribution law.","PeriodicalId":40775,"journal":{"name":"Ukrainian Metrological Journal","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Metrological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24027/2306-7039.3.2021.241627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The error in the identification of the distribution law entails an incorrect assessment of other characteristics (standard deviation, kurtosis, antikurtosis, etc.). The article is devoted to the development of accessible and simple software products for solving problems of identifying distribution laws and determining the optimal size of a data sample. The paper describes a modified method for identifying the law of data distribution by visual analysis of the proximity of histograms with a reduction in the sample size with software implementation. The method allows choosing the most probable distribution law from a wide base of the set. The essence of the method consists in calculating the entropy coefficient and absolute entropy error for the initial and half data sample, determining the optimal method for processing the histogram using visual analysis of the proximity of histograms, and identifying the data distribution law. The experimental data processing model makes it possible to take into account the statistical properties of real data and can be applied to various arrays, and allows to reduce the sample size required for analysis. An automated system for identifying the laws of data distribution with a simple and intuitive interface has been developed. The results of the study on real data indicate an increase in the reliability of the identification of the data distribution law.
用样本约简法分析直方图接近性来识别数据分布规律的自动化系统
对分布规律的错误识别会导致对其他特征(标准差、峰度、反峰度等)的错误评估。本文致力于开发易于访问和简单的软件产品,以解决识别分布规律和确定数据样本的最佳大小的问题。本文描述了一种改进的方法,通过直观分析直方图的接近性来识别数据分布规律,并通过软件实现减少样本量。该方法允许从广泛的基数中选择最可能的分布规律。该方法的实质是计算初始数据样本和半数据样本的熵系数和绝对熵误差,利用直方图接近度的视觉分析确定处理直方图的最佳方法,识别数据分布规律。实验数据处理模型可以考虑到实际数据的统计特性,可以应用于各种阵列,并允许减少分析所需的样本量。开发了一种具有简单直观界面的自动识别数据分布规律的系统。对实际数据的研究结果表明,该方法提高了数据分布规律识别的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ukrainian Metrological Journal
Ukrainian Metrological Journal INSTRUMENTS & INSTRUMENTATION-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信