{"title":"Small molecules targeting endolysosomal acidification and signaling in sepsis and severe SARS-CoV-2 infection/COVID-19","authors":"M. Blaess, O. Sommerfeld, R. Csuk, H. Deigner","doi":"10.37349/ei.2022.00063","DOIUrl":null,"url":null,"abstract":"Sepsis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and its severe form coronavirus disease 2019 (COVID-19), represent the major medical challenges of the modern era. Therapeutic options are limited, mostly symptomatic, partially relying on antibodies and corticosteroids and, in the case of SARS-CoV-2 infection, supplemented by the antiviral drug remdesivir, and more recently by molnupiravir, nirmatrelvir/ritonavir, and the Janus kinase (JAK) inhibitors tofacitinib and baricitinib. Sepsis and severe SARS-CoV-2 infection/COVID-19 share many features at the level of pathophysiology and pro-inflammatory mediators, thus enabling a common disease management strategy. New ideas in successfully targeting the prognostic severity and mortality marker pentraxin 3 (PTX3) in sepsis and severe SARS-CoV-2 infection/COVID-19; the complement (C3/C3a/C3aR and C5/C5a/C5aR axis); tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 expression; IL-6-triggered expression of C5aR receptor in vascular endothelial cells; and release of anti-inflammatory IL-10 are still missing. Small molecules with lysosomotropic characteristics such as the approved drugs amitriptyline, desloratadine, fluvoxamine, azelastine, and ambroxol have demonstrated their clinical benefits in rodent models of sepsis or clinical trials in COVID-19; however, their exact mode of action remains to be fully elucidated. Addressing disease-relevant targets such as viral infection of host cells, shedding of toll-like receptors (TLRs), expression of pro-inflammatory mediators such as TNF-α, IL-1β, IL-6, PTX3, and the complement receptor C5aR, highlight the advantages of this multi-target approach in comparison to current standards. Rational drug repurposing of approved drugs or screening for active compounds with virtually exclusively lysosomotropic pharmacologic effects is a major opportunity to improve prophylaxis and treatment of sepsis and/or SARS-CoV-2 infection, and its severe form COVID-19.","PeriodicalId":93552,"journal":{"name":"Exploration of immunology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration of immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37349/ei.2022.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sepsis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and its severe form coronavirus disease 2019 (COVID-19), represent the major medical challenges of the modern era. Therapeutic options are limited, mostly symptomatic, partially relying on antibodies and corticosteroids and, in the case of SARS-CoV-2 infection, supplemented by the antiviral drug remdesivir, and more recently by molnupiravir, nirmatrelvir/ritonavir, and the Janus kinase (JAK) inhibitors tofacitinib and baricitinib. Sepsis and severe SARS-CoV-2 infection/COVID-19 share many features at the level of pathophysiology and pro-inflammatory mediators, thus enabling a common disease management strategy. New ideas in successfully targeting the prognostic severity and mortality marker pentraxin 3 (PTX3) in sepsis and severe SARS-CoV-2 infection/COVID-19; the complement (C3/C3a/C3aR and C5/C5a/C5aR axis); tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 expression; IL-6-triggered expression of C5aR receptor in vascular endothelial cells; and release of anti-inflammatory IL-10 are still missing. Small molecules with lysosomotropic characteristics such as the approved drugs amitriptyline, desloratadine, fluvoxamine, azelastine, and ambroxol have demonstrated their clinical benefits in rodent models of sepsis or clinical trials in COVID-19; however, their exact mode of action remains to be fully elucidated. Addressing disease-relevant targets such as viral infection of host cells, shedding of toll-like receptors (TLRs), expression of pro-inflammatory mediators such as TNF-α, IL-1β, IL-6, PTX3, and the complement receptor C5aR, highlight the advantages of this multi-target approach in comparison to current standards. Rational drug repurposing of approved drugs or screening for active compounds with virtually exclusively lysosomotropic pharmacologic effects is a major opportunity to improve prophylaxis and treatment of sepsis and/or SARS-CoV-2 infection, and its severe form COVID-19.