Bayesian Analysis of Extended Cox Model with Time-Varying Covariates Using Bootstrap Prior

Q3 Mathematics
O. Olaniran, M. A. A. Abdullah
{"title":"Bayesian Analysis of Extended Cox Model with Time-Varying Covariates Using Bootstrap Prior","authors":"O. Olaniran, M. A. A. Abdullah","doi":"10.22237/jmasm/1604188980","DOIUrl":null,"url":null,"abstract":"A new Bayesian estimation procedure for extended cox model with time varying covariate was presented. The prior was determined using bootstrapping technique within the framework of parametric empirical Bayes. The efficiency of the proposed method was observed using Monte Carlo simulation of extended Cox model with time varying covariates under varying scenarios. Validity of the proposed method was also ascertained using real life data set of Stanford heart transplant. Comparison of the proposed method with its competitor established appreciable supremacy of the method.","PeriodicalId":47201,"journal":{"name":"Journal of Modern Applied Statistical Methods","volume":"18 1","pages":"2-13"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Applied Statistical Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22237/jmasm/1604188980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

Abstract

A new Bayesian estimation procedure for extended cox model with time varying covariate was presented. The prior was determined using bootstrapping technique within the framework of parametric empirical Bayes. The efficiency of the proposed method was observed using Monte Carlo simulation of extended Cox model with time varying covariates under varying scenarios. Validity of the proposed method was also ascertained using real life data set of Stanford heart transplant. Comparison of the proposed method with its competitor established appreciable supremacy of the method.
基于Bootstrap先验的时变协变量扩展Cox模型的贝叶斯分析
提出了一种具有时变协变量的扩展cox模型的贝叶斯估计方法。在参数经验贝叶斯框架内,利用自举技术确定先验。通过蒙特卡罗模拟具有时变协变量的扩展Cox模型,观察了该方法在不同场景下的有效性。用斯坦福心脏移植的真实数据集验证了该方法的有效性。将所提出的方法与其竞争对手进行比较,确定了该方法明显的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
5
期刊介绍: The Journal of Modern Applied Statistical Methods is an independent, peer-reviewed, open access journal designed to provide an outlet for the scholarly works of applied nonparametric or parametric statisticians, data analysts, researchers, classical or modern psychometricians, and quantitative or qualitative methodologists/evaluators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信