{"title":"Second order expansions of estimators in nonparametric moment conditions models with weakly dependent data","authors":"Francesco Bravo","doi":"10.1080/07474938.2021.1991140","DOIUrl":null,"url":null,"abstract":"Abstract This paper considers estimation of nonparametric moment conditions models with weakly dependent data. The estimator is based on a local linear version of the generalized empirical likelihood approach, and is an alternative to the popular local linear generalized method of moment estimator. The paper derives uniform convergence rates and pointwise asymptotic normality of the resulting local linear generalized empirical likelihood estimator. The paper also develops second order stochastic expansions (under a standard undersmoothing condition) that explain the better finite sample performance of the local linear generalized empirical likelihood estimator compared to that of the efficient local linear generalized method of moments estimator, and can be used to obtain (second order) bias corrected estimators. Monte Carlo simulations and an empirical application illustrate the competitive finite sample properties and the usefulness of the proposed estimators and second order bias corrections.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"583 - 606"},"PeriodicalIF":0.8000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2021.1991140","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract This paper considers estimation of nonparametric moment conditions models with weakly dependent data. The estimator is based on a local linear version of the generalized empirical likelihood approach, and is an alternative to the popular local linear generalized method of moment estimator. The paper derives uniform convergence rates and pointwise asymptotic normality of the resulting local linear generalized empirical likelihood estimator. The paper also develops second order stochastic expansions (under a standard undersmoothing condition) that explain the better finite sample performance of the local linear generalized empirical likelihood estimator compared to that of the efficient local linear generalized method of moments estimator, and can be used to obtain (second order) bias corrected estimators. Monte Carlo simulations and an empirical application illustrate the competitive finite sample properties and the usefulness of the proposed estimators and second order bias corrections.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.