A violation of multiple mixing close to an extremal

Q2 Mathematics
S. Tikhonov
{"title":"A violation of multiple mixing close to an extremal","authors":"S. Tikhonov","doi":"10.1090/mosc/322","DOIUrl":null,"url":null,"abstract":"<p>Given a mixing action <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of a group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and a set <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\">\n <mml:semantics>\n <mml:mi>A</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">A</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of half measure we consider the possible limits of the measures <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu left-parenthesis upper A intersection upper L Superscript m Super Subscript i Superscript Baseline upper A intersection upper L Superscript n Super Subscript i Superscript Baseline upper A right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>A</mml:mi>\n <mml:mo>∩<!-- ∩ --></mml:mo>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>m</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n </mml:msup>\n <mml:mi>A</mml:mi>\n <mml:mo>∩<!-- ∩ --></mml:mo>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msub>\n <mml:mi>n</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n </mml:msup>\n <mml:mi>A</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mu (A\\cap L^{m_{i}}A\\cap L^{n_{i}}A)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> as <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"i right-arrow normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>i</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">i\\to \\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m Subscript i Baseline comma n Subscript i Baseline comma m Subscript i Baseline minus n Subscript i Baseline right-arrow normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi>m</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>n</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>m</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:msub>\n <mml:mi>n</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>i</mml:mi>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m_{i},n_{i},m_{i}-n_{i}\\to \\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. If the action is 3-mixing, then these limits are always equal to <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 slash 8\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>8</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1/8</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In the Ledrappier example, this limit is zero for some sequences. The following question is studied: what can be said about actions if one of these limits is positive but small? In the paper we make several observations on this topic.</p>\n\n<p><italic>Bibliography</italic>: 11 titles.</p>","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mosc/322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Given a mixing action L L of a group G G and a set A A of half measure we consider the possible limits of the measures μ ( A L m i A L n i A ) \mu (A\cap L^{m_{i}}A\cap L^{n_{i}}A) as i i\to \infty and m i , n i , m i n i m_{i},n_{i},m_{i}-n_{i}\to \infty . If the action is 3-mixing, then these limits are always equal to 1 / 8 1/8 . In the Ledrappier example, this limit is zero for some sequences. The following question is studied: what can be said about actions if one of these limits is positive but small? In the paper we make several observations on this topic.

Bibliography: 11 titles.

在极值附近多次混合的违例
给定群G G和半测度集合a a的混合作用L L,我们考虑测度μ (a∩L mi a∩L n i a) \mu (a \cap L^{m_iA{}}\cap)的可能极限L^{n_iA{)}}当i→∞i \to\infty和m i,n i,m i-n i→∞m i,n i,m i-n i {}{}{}{}\to\infty。如果动作是3混合,那么这些限制总是等于1/8 1/8。在Ledrappier的例子中,这个极限对于某些序列是零。研究了以下问题:如果这些限制中的一个是正的但很小,那么对行动可以说什么?在本文中,我们对这个话题做了一些观察。参考书目:11篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信