On the Genus of the Idempotent Graph of a Finite Commutative Ring

Q4 Mathematics
G. G. Belsi, S. Kavitha, K. Selvakumar
{"title":"On the Genus of the Idempotent Graph of a Finite Commutative Ring","authors":"G. G. Belsi, S. Kavitha, K. Selvakumar","doi":"10.7151/dmgaa.1347","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a finite commutative ring with identity. The idempotent graph of R is the simple undirected graph I(R) with vertex set, the set of all nontrivial idempotents of R and two distinct vertices x and y are adjacent if and only if xy = 0. In this paper, we have determined all isomorphism classes of finite commutative rings with identity whose I(R) has genus one or two. Also we have determined all isomorphism classes of finite commutative rings with identity whose I(R) has crosscap one. Also we study the the book embedding of toroidal idempotent graphs and classify finite commutative rings whose I(R) is a ring graph.","PeriodicalId":36816,"journal":{"name":"Discussiones Mathematicae - General Algebra and Applications","volume":"41 1","pages":"23 - 31"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae - General Algebra and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7151/dmgaa.1347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Let R be a finite commutative ring with identity. The idempotent graph of R is the simple undirected graph I(R) with vertex set, the set of all nontrivial idempotents of R and two distinct vertices x and y are adjacent if and only if xy = 0. In this paper, we have determined all isomorphism classes of finite commutative rings with identity whose I(R) has genus one or two. Also we have determined all isomorphism classes of finite commutative rings with identity whose I(R) has crosscap one. Also we study the the book embedding of toroidal idempotent graphs and classify finite commutative rings whose I(R) is a ring graph.
关于有限交换环的幂等图的亏格
设R是一个有恒等的有限交换环。R的幂等图是具有顶点集的简单无向图I(R),当且仅当xy = 0时,R的所有非平凡幂等的集合与两个不同的顶点x和y相邻。本文确定了I(R)具有1或2属的有限交换环的所有同构类。此外,我们还确定了具有单位元的有限交换环的所有同构类,其I(R)的交叉点为1。研究了环面幂等图的书本嵌入,并对I(R)为环图的有限交换环进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discussiones Mathematicae - General Algebra and Applications
Discussiones Mathematicae - General Algebra and Applications Mathematics-Algebra and Number Theory
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信