Nonlocal state-space strain gradient wave propagation of magneto thermo piezoelectric functionally graded nanobeam

IF 1.1 Q4 MECHANICS
R. Selvamani, Rubine Loganathan, R. Dimitri, Francesco Tornabene
{"title":"Nonlocal state-space strain gradient wave propagation of magneto thermo piezoelectric functionally graded nanobeam","authors":"R. Selvamani, Rubine Loganathan, R. Dimitri, Francesco Tornabene","doi":"10.1515/cls-2022-0192","DOIUrl":null,"url":null,"abstract":"Abstract In this work, the state -space nonlocal strain gradient theory is used for the vibration analysis of magneto thermo piezoelectric functionally graded material (FGM) nanobeam. An analysis of FGM constituent properties is stated by using the power law relations. The refined higher order beam theory and Hamilton’s principle have been used to obtain the motion equations. Besides, the governing equations of the magneto thermo piezoelectric nanobeam are extracted by developed nonlocal state-space theory. And to solve the wave propagation problems, the analytical wave dispersion method is used. The effect of magnetic potential, temperature gradient, and electric voltage in variant parameters are presented in graph.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this work, the state -space nonlocal strain gradient theory is used for the vibration analysis of magneto thermo piezoelectric functionally graded material (FGM) nanobeam. An analysis of FGM constituent properties is stated by using the power law relations. The refined higher order beam theory and Hamilton’s principle have been used to obtain the motion equations. Besides, the governing equations of the magneto thermo piezoelectric nanobeam are extracted by developed nonlocal state-space theory. And to solve the wave propagation problems, the analytical wave dispersion method is used. The effect of magnetic potential, temperature gradient, and electric voltage in variant parameters are presented in graph.
磁热压电功能梯度纳米梁的非局域状态空间应变梯度波传播
摘要本文将状态空间非局部应变梯度理论应用于磁热压电功能梯度材料纳米梁的振动分析。利用幂律关系对FGM的组成性质进行了分析。利用改进的高阶光束理论和哈密顿原理得到了运动方程。此外,利用发展的非局部状态空间理论提取了磁热压电纳米梁的控制方程。为了解决波的传播问题,采用了解析波色散法。用图形表示了磁势、温度梯度和电压在不同参数下的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
13.30%
发文量
25
审稿时长
14 weeks
期刊介绍: The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信