Comparison of nonlinear solvers within continuation method for steady-state variably saturated groundwater flow modelling

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
D. Anuprienko
{"title":"Comparison of nonlinear solvers within continuation method for steady-state variably saturated groundwater flow modelling","authors":"D. Anuprienko","doi":"10.1515/rnam-2021-0016","DOIUrl":null,"url":null,"abstract":"Abstract Nonlinearity continuation method, applied to boundary value problems for steady-state Richards equation, gradually approaches the solution through a series of intermediate problems. Originally, the Newton method with simple line search algorithm was used to solve the intermediate problems. In the present paper, other solvers such as Picard and mixed Picard–Newton methods are considered, combined with slightly modified line search approach. Numerical experiments are performed with advanced finite volume discretizations for model and real-life problems.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":"36 1","pages":"183 - 195"},"PeriodicalIF":0.5000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2021-0016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Nonlinearity continuation method, applied to boundary value problems for steady-state Richards equation, gradually approaches the solution through a series of intermediate problems. Originally, the Newton method with simple line search algorithm was used to solve the intermediate problems. In the present paper, other solvers such as Picard and mixed Picard–Newton methods are considered, combined with slightly modified line search approach. Numerical experiments are performed with advanced finite volume discretizations for model and real-life problems.
稳态变饱和地下水流模型连续法中非线性求解器的比较
摘要非线性延拓法应用于稳态Richards方程的边值问题,通过一系列中间问题逐步逼近。最初,牛顿法和简单的直线搜索算法被用来解决中间问题。在本文中,考虑了其他求解器,如Picard和混合Picard–Newton方法,并结合稍微修改的线搜索方法。针对模型和实际问题,使用先进的有限体积离散化进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest. Topics: -numerical analysis- numerical linear algebra- finite element methods for PDEs- iterative methods- Monte-Carlo methods- mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信