Diophantine equations in primes: Density of prime points on affine hypersurfaces

IF 2.3 1区 数学 Q1 MATHEMATICS
S. Yamagishi
{"title":"Diophantine equations in primes: Density of prime points on affine hypersurfaces","authors":"S. Yamagishi","doi":"10.1215/00127094-2021-0023","DOIUrl":null,"url":null,"abstract":"Let F ∈ Z[x1, . . . , xn] be a homogeneous form of degree d ≥ 2, and let V ∗ F denote the singular locus of the affine variety V (F ) = {z ∈ C : F (z) = 0}. In this paper, we prove the existence of integer solutions with prime coordinates to the equation F (x1, . . . , xn) = 0 provided F satisfies suitable local conditions and n − dimV ∗ F ≥ 235d(2d− 1)4. Our result improves on what was known previously due to Cook and Magyar (B. Cook and Á. Magyar, ‘Diophantine equations in the primes’. Invent. Math. 198 (2014), 701-737), which required n− dimV ∗ F to be an exponential tower in d.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2021-0023","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Let F ∈ Z[x1, . . . , xn] be a homogeneous form of degree d ≥ 2, and let V ∗ F denote the singular locus of the affine variety V (F ) = {z ∈ C : F (z) = 0}. In this paper, we prove the existence of integer solutions with prime coordinates to the equation F (x1, . . . , xn) = 0 provided F satisfies suitable local conditions and n − dimV ∗ F ≥ 235d(2d− 1)4. Our result improves on what was known previously due to Cook and Magyar (B. Cook and Á. Magyar, ‘Diophantine equations in the primes’. Invent. Math. 198 (2014), 701-737), which required n− dimV ∗ F to be an exponential tower in d.
素数中的丢番图方程:仿射超曲面上素数点的密度
设F∈Z[x1,…,xn]是次d≥2的齐次形式,并且设V*F表示仿射变换V(F)={Z∈C:F(Z)=0}的奇异轨迹。在本文中,我们证明了方程F(x1,…,xn)=0的素坐标整数解的存在性,条件是F满足适当的局部条件并且n−dimV*F≥235d(2d−1)4。我们的结果改进了先前由Cook和Magyar(B.Cook和Á.Magyar,“素数中的丢番图方程”.Invent.Math.198(2014),701-737)得出的结果,该结果要求n−dimV*F是d中的指数塔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信