{"title":"Lyapunov exponent for products of random Ising transfer matrices: the balanced disorder case","authors":"G. Giacomin, R. L. Greenblatt","doi":"10.30757/ALEA.v19-27","DOIUrl":null,"url":null,"abstract":"We analyze the top Lyapunov exponent of the product of sequences of two by two matrices that appears in the analysis of several statistical mechanics models with disorder: for example these matrices are the transfer matrices for the nearest neighbor Ising chain with random external field, and the free energy density of this Ising chain is the Lyapunov exponent we consider. We obtain the sharp behavior of this exponent in the large interaction limit when the external field is centered: this balanced case turns out to be critical in many respects. From a mathematical standpoint we precisely identify the behavior of the top Lyapunov exponent of a product of two dimensional random matrices close to a diagonal random matrix for which top and bottom Lyapunov exponents coincide. In particular, the Lyapunov exponent is only $\\log$-H\\\"older continuous.","PeriodicalId":49244,"journal":{"name":"Alea-Latin American Journal of Probability and Mathematical Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alea-Latin American Journal of Probability and Mathematical Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/ALEA.v19-27","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
We analyze the top Lyapunov exponent of the product of sequences of two by two matrices that appears in the analysis of several statistical mechanics models with disorder: for example these matrices are the transfer matrices for the nearest neighbor Ising chain with random external field, and the free energy density of this Ising chain is the Lyapunov exponent we consider. We obtain the sharp behavior of this exponent in the large interaction limit when the external field is centered: this balanced case turns out to be critical in many respects. From a mathematical standpoint we precisely identify the behavior of the top Lyapunov exponent of a product of two dimensional random matrices close to a diagonal random matrix for which top and bottom Lyapunov exponents coincide. In particular, the Lyapunov exponent is only $\log$-H\"older continuous.
期刊介绍:
ALEA publishes research articles in probability theory, stochastic processes, mathematical statistics, and their applications. It publishes also review articles of subjects which developed considerably in recent years. All articles submitted go through a rigorous refereeing process by peers and are published immediately after accepted.
ALEA is an electronic journal of the Latin-american probability and statistical community which provides open access to all of its content and uses only free programs. Authors are allowed to deposit their published article into their institutional repository, freely and with no embargo, as long as they acknowledge the source of the paper.
ALEA is affiliated with the Institute of Mathematical Statistics.