Extractive Summarization with Very Deep Pretrained Language Model

Yang Gu, Yanke Hu
{"title":"Extractive Summarization with Very Deep Pretrained Language Model","authors":"Yang Gu, Yanke Hu","doi":"10.5121/IJAIA.2019.10203","DOIUrl":null,"url":null,"abstract":"Recent development of generative pretrained language models has been proven very successful on a wide range of NLP tasks, such as text classification, question answering, textual entailment and so on.In this work, we present a two-phase encoder decoder architecture based on Bidirectional Encoding Representation from Transformers(BERT) for extractive summarization task. We evaluated our model by both automatic metrics and human annotators, and demonstrated that the architecture achieves the stateof-the-art comparable result on large scale corpus - CNN/Daily Mail . As the best of our knowledge, this is the first work that applies BERT based architecture to a text summarization task and achieved the state-of-the-art comparable result.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/IJAIA.2019.10203","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/IJAIA.2019.10203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recent development of generative pretrained language models has been proven very successful on a wide range of NLP tasks, such as text classification, question answering, textual entailment and so on.In this work, we present a two-phase encoder decoder architecture based on Bidirectional Encoding Representation from Transformers(BERT) for extractive summarization task. We evaluated our model by both automatic metrics and human annotators, and demonstrated that the architecture achieves the stateof-the-art comparable result on large scale corpus - CNN/Daily Mail . As the best of our knowledge, this is the first work that applies BERT based architecture to a text summarization task and achieved the state-of-the-art comparable result.
基于超深度预训练语言模型的提取式摘要
近年来,生成式预训练语言模型在文本分类、问答、文本蕴涵等NLP任务中取得了巨大的成功。在这项工作中,我们提出了一种基于变形器双向编码表示(BERT)的两相编码器解码器架构,用于提取摘要任务。我们通过自动指标和人工注释器来评估我们的模型,并证明该架构在大规模语料库(CNN/Daily Mail)上达到了最先进的可比结果。据我们所知,这是第一个将基于BERT的体系结构应用于文本摘要任务并获得最先进的可比结果的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信