Prorepresentability of KM-cohomology in weight 3 generalizing a result of Bloch

IF 0.5 Q3 MATHEMATICS
Eoin Mackall
{"title":"Prorepresentability of KM-cohomology in\nweight 3 generalizing a result of Bloch","authors":"Eoin Mackall","doi":"10.2140/akt.2023.8.127","DOIUrl":null,"url":null,"abstract":"We generalize a result, on the pro-representability of Milnor $K$-cohomology groups at the identity, that's due to Bloch. In particular, we prove, for $X$ a smooth, proper, and geometrically connected variety defined over an algebraic field extension $k/\\mathbb{Q}$, that the functor \\[\\mathscr{T}_{X}^{i,3}(A)=\\ker\\left(H^i(X_A,\\mathcal{K}_{3,X_A}^M)\\rightarrow H^i(X,\\mathcal{K}_{3,X}^M)\\right),\\] defined on Artin local $k$-algebras $(A,\\mathfrak{m}_A)$ with $A/\\mathfrak{m}_A\\cong k$, is pro-representable provided that certain Hodge numbers of $X$ vanish.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2023.8.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize a result, on the pro-representability of Milnor $K$-cohomology groups at the identity, that's due to Bloch. In particular, we prove, for $X$ a smooth, proper, and geometrically connected variety defined over an algebraic field extension $k/\mathbb{Q}$, that the functor \[\mathscr{T}_{X}^{i,3}(A)=\ker\left(H^i(X_A,\mathcal{K}_{3,X_A}^M)\rightarrow H^i(X,\mathcal{K}_{3,X}^M)\right),\] defined on Artin local $k$-algebras $(A,\mathfrak{m}_A)$ with $A/\mathfrak{m}_A\cong k$, is pro-representable provided that certain Hodge numbers of $X$ vanish.
推广Bloch结果的权值3上同调的可表示性
我们推广了一个结果,关于Milnor $K$ -上同群在单位上的亲可表征性,这是由于Bloch。特别地,我们证明了对于定义在代数域扩展$k/\mathbb{Q}$上的光滑、适当和几何连接的变量$X$,在$X$的某些Hodge数消失的情况下,用$A/\mathfrak{m}_A\cong k$定义在Artin局部$k$ -代数$(A,\mathfrak{m}_A)$上的函子\[\mathscr{T}_{X}^{i,3}(A)=\ker\left(H^i(X_A,\mathcal{K}_{3,X_A}^M)\rightarrow H^i(X,\mathcal{K}_{3,X}^M)\right),\]是亲可表示的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信