{"title":"Effect of leading-edge tubercles on the flow over low-aspect-ratio wings at low Reynolds number","authors":"Pengxin Yang, Yichen Zhu, Jinjun Wang","doi":"10.1016/j.taml.2022.100386","DOIUrl":null,"url":null,"abstract":"<div><p>Two-dimensional time-resolved particle image velocimetry (TR-PIV) and stereographic particle image velocimetry (SPIV) techniques were used to investigate the effect of leading-edge tubercles on the flow over low-aspect-ratio wing models. The angle of attack is fixed at 10°, and the Reynolds number based on chord length is 5.8 × 10<sup>3</sup>. It is shown that the leading-edge tubercles can effectively mitigate flow separation in the model and also reduce the contribution of wake vortex to the fluctuating energy of flow. Counter-rotating vortex pairs (CVPs) initiated from the peak of leading-edge tubercles can promote nearby momentum exchange, enhance mixing of the flow and increase the energy contained in the boundary layer, which results in resisting the larger adverse pressure gradient. Therefore, it is concluded that CVPs play an important role in mitigating the flow separation for wings with leading-edge tubercles.</p></div>","PeriodicalId":46902,"journal":{"name":"Theoretical and Applied Mechanics Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095034922000666","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
Two-dimensional time-resolved particle image velocimetry (TR-PIV) and stereographic particle image velocimetry (SPIV) techniques were used to investigate the effect of leading-edge tubercles on the flow over low-aspect-ratio wing models. The angle of attack is fixed at 10°, and the Reynolds number based on chord length is 5.8 × 103. It is shown that the leading-edge tubercles can effectively mitigate flow separation in the model and also reduce the contribution of wake vortex to the fluctuating energy of flow. Counter-rotating vortex pairs (CVPs) initiated from the peak of leading-edge tubercles can promote nearby momentum exchange, enhance mixing of the flow and increase the energy contained in the boundary layer, which results in resisting the larger adverse pressure gradient. Therefore, it is concluded that CVPs play an important role in mitigating the flow separation for wings with leading-edge tubercles.
期刊介绍:
An international journal devoted to rapid communications on novel and original research in the field of mechanics. TAML aims at publishing novel, cutting edge researches in theoretical, computational, and experimental mechanics. The journal provides fast publication of letter-sized articles and invited reviews within 3 months. We emphasize highlighting advances in science, engineering, and technology with originality and rapidity. Contributions include, but are not limited to, a variety of topics such as: • Aerospace and Aeronautical Engineering • Coastal and Ocean Engineering • Environment and Energy Engineering • Material and Structure Engineering • Biomedical Engineering • Mechanical and Transportation Engineering • Civil and Hydraulic Engineering Theoretical and Applied Mechanics Letters (TAML) was launched in 2011 and sponsored by Institute of Mechanics, Chinese Academy of Sciences (IMCAS) and The Chinese Society of Theoretical and Applied Mechanics (CSTAM). It is the official publication the Beijing International Center for Theoretical and Applied Mechanics (BICTAM).