Pressure boundary conditions for viscous flows in thin tube structures: Stokes equations with locally distributed Brinkman term

IF 2.6 4区 数学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
G. Panasenko, K. Pileckas
{"title":"Pressure boundary conditions for viscous flows in thin tube structures: Stokes equations with locally distributed Brinkman term","authors":"G. Panasenko, K. Pileckas","doi":"10.1051/mmnp/2023016","DOIUrl":null,"url":null,"abstract":"The steady state Stokes-Brinkman equations in a thin tube structure is considered. The Brinkman term differs from zero only in small balls near the ends of the tubes. The boundary conditions are: given pressure at the inflow and outflow of the tube structure and the no slip boundary condition on the lateral boundary. The complete asymptotic expansion of the problem is constructed. The error estimates are proved. The method of partial asymptotic dimension reduction is introduced for the Stokes-Brinkman equations and justified by an error estimate. This method approximates the main problem by a hybrid dimension problem for the Stokes-Brinkman equations in a reduced domain. Asymptotic analysis is applied to determine the permeability of a tissue with a roll of blood vessels.","PeriodicalId":18285,"journal":{"name":"Mathematical Modelling of Natural Phenomena","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling of Natural Phenomena","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2023016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The steady state Stokes-Brinkman equations in a thin tube structure is considered. The Brinkman term differs from zero only in small balls near the ends of the tubes. The boundary conditions are: given pressure at the inflow and outflow of the tube structure and the no slip boundary condition on the lateral boundary. The complete asymptotic expansion of the problem is constructed. The error estimates are proved. The method of partial asymptotic dimension reduction is introduced for the Stokes-Brinkman equations and justified by an error estimate. This method approximates the main problem by a hybrid dimension problem for the Stokes-Brinkman equations in a reduced domain. Asymptotic analysis is applied to determine the permeability of a tissue with a roll of blood vessels.
薄管结构中粘性流动的压力边界条件:局部分布Brinkman项的Stokes方程
研究了薄管结构中的稳态Stokes-Brinkman方程。布林克曼项只有在靠近管子末端的小球中才与零不同。边界条件为:管状结构流入和流出处给定压力,侧向边界处无滑移边界条件。构造了问题的完全渐近展开式。对误差估计进行了验证。介绍了Stokes-Brinkman方程的部分渐近降维方法,并用误差估计进行了验证。该方法将Stokes-Brinkman方程的主要问题近似为约简域上的混合维数问题。渐近分析用于确定具有血管卷的组织的渗透性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Modelling of Natural Phenomena
Mathematical Modelling of Natural Phenomena MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
5.20
自引率
0.00%
发文量
46
审稿时长
6-12 weeks
期刊介绍: The Mathematical Modelling of Natural Phenomena (MMNP) is an international research journal, which publishes top-level original and review papers, short communications and proceedings on mathematical modelling in biology, medicine, chemistry, physics, and other areas. The scope of the journal is devoted to mathematical modelling with sufficiently advanced model, and the works studying mainly the existence and stability of stationary points of ODE systems are not considered. The scope of the journal also includes applied mathematics and mathematical analysis in the context of its applications to the real world problems. The journal is essentially functioning on the basis of topical issues representing active areas of research. Each topical issue has its own editorial board. The authors are invited to submit papers to the announced issues or to suggest new issues. Journal publishes research articles and reviews within the whole field of mathematical modelling, and it will continue to provide information on the latest trends and developments in this ever-expanding subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信