Asymmetric extension of Pascal-Delannoy triangles

IF 1 4区 数学 Q1 MATHEMATICS
Said Amrouche, H. Belbachir
{"title":"Asymmetric extension of Pascal-Delannoy triangles","authors":"Said Amrouche, H. Belbachir","doi":"10.2298/aadm200411028a","DOIUrl":null,"url":null,"abstract":"In this paper, we give a generalization of the Pascal triangle called the\n quasi s-Pascal triangle. For this, consider a set of lattice path, which is\n a dual approach to the definition of Ramirez and Sirvent: A Generalization\n of the k-bonacci Sequence from Riordan Arrays. The electronic journal of\n combinatorics, 22(1) (2015), 1-38. We give the recurrence relation for the\n sum of elements lying over finite ray of the quasi s-Pascal triangle, then,\n we establish a q-analogue of the coefficient of this triangle. Some\n identities are also given.","PeriodicalId":51232,"journal":{"name":"Applicable Analysis and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis and Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2298/aadm200411028a","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we give a generalization of the Pascal triangle called the quasi s-Pascal triangle. For this, consider a set of lattice path, which is a dual approach to the definition of Ramirez and Sirvent: A Generalization of the k-bonacci Sequence from Riordan Arrays. The electronic journal of combinatorics, 22(1) (2015), 1-38. We give the recurrence relation for the sum of elements lying over finite ray of the quasi s-Pascal triangle, then, we establish a q-analogue of the coefficient of this triangle. Some identities are also given.
Pascal Delannoy三角形的非对称扩张
本文给出了帕斯卡三角形的一种推广,称为拟s-帕斯卡三角形。为此,考虑一组点阵路径,这是Ramirez和Sirvent定义的对偶方法:k-bonacci序列从Riordan数组的推广。电子组合学报,22(1)(2015),1-38。给出了拟s-Pascal三角形有限射线上元素和的递推关系,并建立了该三角形系数的q-类似形式。还给出了一些恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applicable Analysis and Discrete Mathematics
Applicable Analysis and Discrete Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: Applicable Analysis and Discrete Mathematics is indexed, abstracted and cover-to cover reviewed in: Web of Science, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), Mathematical Reviews/MathSciNet, Zentralblatt für Mathematik, Referativny Zhurnal-VINITI. It is included Citation Index-Expanded (SCIE), ISI Alerting Service and in Digital Mathematical Registry of American Mathematical Society (http://www.ams.org/dmr/).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信