Spectral theory of C-symmetric non-selfadjoint differential operators of order 2n

IF 0.8 4区 数学 Q2 MATHEMATICS
H. Behncke, D. Hinton
{"title":"Spectral theory of C-symmetric non-selfadjoint differential operators of order 2n","authors":"H. Behncke, D. Hinton","doi":"10.58997/ejde.sp.02.b2","DOIUrl":null,"url":null,"abstract":"We continue the spectral analysis of differential operators with complex coefficients, extending some results for Sturm-Liouville operators to higher order operators. We give conditions for the essential spectrum to be empty, and for the operator to have compact resolvent. Conditions are given on the coefficients for the resolvent to be Hilbert-Schmidt. These conditions are new even for real coefficients, i.e., the selfadjoint case. Asymptotic analysis is a central tool.\nSee also https://ejde.math.txstate.edu/special/02/b2/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.sp.02.b2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We continue the spectral analysis of differential operators with complex coefficients, extending some results for Sturm-Liouville operators to higher order operators. We give conditions for the essential spectrum to be empty, and for the operator to have compact resolvent. Conditions are given on the coefficients for the resolvent to be Hilbert-Schmidt. These conditions are new even for real coefficients, i.e., the selfadjoint case. Asymptotic analysis is a central tool. See also https://ejde.math.txstate.edu/special/02/b2/abstr.html
2n阶c对称非自伴随微分算子的谱理论
我们继续对复系数微分算子进行谱分析,将Sturm-Liouville算子的一些结果推广到高阶算子。我们给出了本质谱为空的条件,以及算子具有紧致预解式的条件。给出了预解式的系数为Hilbert-Schmidt的条件。即使对于实系数,即自伴情况,这些条件也是新的。渐近分析是一个中心工具。另请参阅https://ejde.math.txstate.edu/special/02/b2/abstr.html
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信