Existence and controllability for neutral partial differential inclusions nondenselly defined on a half-line

IF 0.8 4区 数学 Q2 MATHEMATICS
Nguyen Thi Van Anh, Bui Thi Hai Yen
{"title":"Existence and controllability for neutral partial differential inclusions nondenselly defined on a half-line","authors":"Nguyen Thi Van Anh, Bui Thi Hai Yen","doi":"10.58997/ejde.2023.07","DOIUrl":null,"url":null,"abstract":"In this article, we study the existence of the integral solution to the neutral functional differential inclusion\n$${\\frac{d}{dt}\\mathcal{D}y_t-A\\mathcal{D}y_t-Ly_t \\in F(t,y_t), \\quad\\text{for a.e. }t \\in J:=[0,\\infty),\\\\  y_0=\\phi \\in C_E=C([-r,0];E),\\quad r>0,}$$\nand the controllability of the corresponding neutral inclusion\n$${\\frac{d}{dt}\\mathcal{D}y_t-A\\mathcal{D}y_t-Ly_t \\in F(t,y_t)+Bu(t),\\quad  \\text{for a.e. } t \\in J,\\\\ y_0=\\phi \\in C_E,}$$\non a half-line via the nonlinear alternative of Leray-Schauder type for contractive multivalued mappings given by Frigon. We illustrate our results with  applications to a neutral partial differential inclusion with diffusion, and to a  neutral functional partial differential equation with obstacle constrains.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.07","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the existence of the integral solution to the neutral functional differential inclusion $${\frac{d}{dt}\mathcal{D}y_t-A\mathcal{D}y_t-Ly_t \in F(t,y_t), \quad\text{for a.e. }t \in J:=[0,\infty),\\  y_0=\phi \in C_E=C([-r,0];E),\quad r>0,}$$ and the controllability of the corresponding neutral inclusion $${\frac{d}{dt}\mathcal{D}y_t-A\mathcal{D}y_t-Ly_t \in F(t,y_t)+Bu(t),\quad  \text{for a.e. } t \in J,\\ y_0=\phi \in C_E,}$$ on a half-line via the nonlinear alternative of Leray-Schauder type for contractive multivalued mappings given by Frigon. We illustrate our results with  applications to a neutral partial differential inclusion with diffusion, and to a  neutral functional partial differential equation with obstacle constrains.
半线上非密集定义的中性偏微分包体的存在性和可控性
本文利用Frigon给出的压缩多值映射的Leray-Schauder型的非线性替代,研究中立型泛函微分包体$${\frac{d}{dt}\mathcal{D}y_t-A\mathcal{D}y_t-Ly_t \in F(t,y_t), \quad\text{for a.e. }t \in J:=[0,\infty),\\  y_0=\phi \in C_E=C([-r,0];E),\quad r>0,}$$的积分解的存在性和相应中立型包体$${\frac{d}{dt}\mathcal{D}y_t-A\mathcal{D}y_t-Ly_t \in F(t,y_t)+Bu(t),\quad  \text{for a.e. } t \in J,\\ y_0=\phi \in C_E,}$$在半线上的可控性。我们将结果应用于具有扩散的中立型偏微分包含,以及具有障碍约束的中立型泛函偏微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信