{"title":"Rigidity Results On Generalized m-Quasi Einstein Manifolds with Associated Affine Killing Vector Field.","authors":"Rahul Poddar, B. Subramanian, R. Sharma","doi":"10.36890/iejg.1286128","DOIUrl":null,"url":null,"abstract":"We study a non-trivial generalized $m$-quasi Einstein manifold $M$ with finite $m$ and associated divergence-free affine Killing vector field, and show that $M$ reduces to an $m$-quasi Einstein manifold. In addition, if $M$ is complete, then it splits as the product of a line and an $(n-1)$-dimensional negatively Einstein manifold. Finally, we show that the same result holds for a complete non-trivial $m$-quasi Einstein manifold $M$ with finite $m$ and associated affine Killing vector field.","PeriodicalId":43768,"journal":{"name":"International Electronic Journal of Geometry","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36890/iejg.1286128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study a non-trivial generalized $m$-quasi Einstein manifold $M$ with finite $m$ and associated divergence-free affine Killing vector field, and show that $M$ reduces to an $m$-quasi Einstein manifold. In addition, if $M$ is complete, then it splits as the product of a line and an $(n-1)$-dimensional negatively Einstein manifold. Finally, we show that the same result holds for a complete non-trivial $m$-quasi Einstein manifold $M$ with finite $m$ and associated affine Killing vector field.