A Fundamental Equation of State for the Calculation of Thermodynamic Properties of n-Octane

IF 4.4 2区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY
R. Beckmüller, R. Span, E. Lemmon, M. Thol
{"title":"A Fundamental Equation of State for the Calculation of Thermodynamic Properties of n-Octane","authors":"R. Beckmüller, R. Span, E. Lemmon, M. Thol","doi":"10.1063/5.0104661","DOIUrl":null,"url":null,"abstract":"An empirical equation of state in terms of the Helmholtz energy is presented for n-octane. It is valid from the triple-point temperature 216.37 K to 650 K with a maximum pressure of 1000 MPa and allows for the calculation of all thermodynamic properties in the vapor and liquid phase, in the supercritical region, and in equilibrium states. In the homogeneous liquid phase, the uncertainty in density is 0.03% at atmospheric pressure. For pressures up to 200 MPa and temperatures between 270 and 440 K, density is described with an uncertainty of 0.1%. Outside this region, the uncertainty in the liquid phase increases to 0.5%. Densities in the vapor phase are estimated to be accurate within 0.5%. The uncertainty in vapor pressure depends on the temperature range and varies from 0.02% to 0.4%. Speed of sound in the liquid phase at temperatures below 500 K is described with an uncertainty of 0.1% or less. The isobaric heat capacity in the liquid phase can be calculated with an uncertainty of 0.1% and in the gas phase with 0.2%. A reasonable physical behavior of the equation of state was ensured by the analysis of numerous thermodynamic properties.","PeriodicalId":16783,"journal":{"name":"Journal of Physical and Chemical Reference Data","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical and Chemical Reference Data","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0104661","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

An empirical equation of state in terms of the Helmholtz energy is presented for n-octane. It is valid from the triple-point temperature 216.37 K to 650 K with a maximum pressure of 1000 MPa and allows for the calculation of all thermodynamic properties in the vapor and liquid phase, in the supercritical region, and in equilibrium states. In the homogeneous liquid phase, the uncertainty in density is 0.03% at atmospheric pressure. For pressures up to 200 MPa and temperatures between 270 and 440 K, density is described with an uncertainty of 0.1%. Outside this region, the uncertainty in the liquid phase increases to 0.5%. Densities in the vapor phase are estimated to be accurate within 0.5%. The uncertainty in vapor pressure depends on the temperature range and varies from 0.02% to 0.4%. Speed of sound in the liquid phase at temperatures below 500 K is described with an uncertainty of 0.1% or less. The isobaric heat capacity in the liquid phase can be calculated with an uncertainty of 0.1% and in the gas phase with 0.2%. A reasonable physical behavior of the equation of state was ensured by the analysis of numerous thermodynamic properties.
计算正辛烷热力学性质的基本状态方程
给出了正辛烷以亥姆霍兹能表示的经验状态方程。它适用于三相温度216.37 K至650 K,最大压力为1000 MPa的范围内,可以计算汽、液相、超临界和平衡状态下的所有热力学性质。在均相液相中,在常压下密度的不确定度为0.03%。对于压力高达200mpa,温度在270和440 K之间,密度的不确定度为0.1%。在此区域之外,液相的不确定度增加到0.5%。气相的密度估计精确在0.5%以内。蒸汽压的不确定度取决于温度范围,在0.02%到0.4%之间变化。在低于500k的温度下,声速在液相中的不确定度为0.1%或更小。液相等压热容的不确定度为0.1%,气相等压热容的不确定度为0.2%。通过对大量热力学性质的分析,保证了状态方程的合理物理行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
11.60%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Journal of Physical and Chemical Reference Data (JPCRD) is published by AIP Publishing for the U.S. Department of Commerce National Institute of Standards and Technology (NIST). The journal provides critically evaluated physical and chemical property data, fully documented as to the original sources and the criteria used for evaluation, preferably with uncertainty analysis. Critical reviews may also be included if they document a reference database, review the data situation in a field, review reference-quality measurement techniques, or review data evaluation methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信