{"title":"Dual images in reversible data hiding with adaptive color space variation using wavelet transforms","authors":"K. Upendra Raju, N. Amutha prabha","doi":"10.1108/ijius-08-2021-0095","DOIUrl":null,"url":null,"abstract":"PurposeSteganography is a data hiding technique used in the data security. while transmission of data through channel, no guarantee that the data is transmitted safely or not. Variety of data security techniques exists such as patch work, low bit rate data hiding, lossy compression etc. This paper aims to increase the security and robustness.Design/methodology/approachThis paper describes, an approach for multiple images steganography that is oriented on the combination of lifting wavelet transform (LWT) and discrete cosine transform (DCT). Here, we have one cover image and two secret images. The cover image is applied with one of the different noises like Gaussian, Salt & Pepper, Poisson, and speckle noises and converted into different color spaces of YCbCr, HSV, and Lab.FindingsDue to the vast development of Internet access and multimedia technology, it becomes very simple to hack and trace secret information. Using this steganography process in reversible data hiding (RDH) helps to prevent secret information.Originality/valueWe can divide the color space converted image into four sub-bands of images by using lifting wavelet transform. By selecting lower bands, the discrete cosine transform is computed for hiding two secret images into the cover image and again one of the transformed secret images is converted by using Arnold transform to get the encrypted/embedded/encoded image. To extract the Stego image, we can apply the revertible operation. For comparing the results, we can calculate PSNR, SSIM, and MSE values by applying the same process for all color spaces of YCbCr, HSV, and Lab. The experimental results give better performance when compared to all other spaces.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-08-2021-0095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 1
Abstract
PurposeSteganography is a data hiding technique used in the data security. while transmission of data through channel, no guarantee that the data is transmitted safely or not. Variety of data security techniques exists such as patch work, low bit rate data hiding, lossy compression etc. This paper aims to increase the security and robustness.Design/methodology/approachThis paper describes, an approach for multiple images steganography that is oriented on the combination of lifting wavelet transform (LWT) and discrete cosine transform (DCT). Here, we have one cover image and two secret images. The cover image is applied with one of the different noises like Gaussian, Salt & Pepper, Poisson, and speckle noises and converted into different color spaces of YCbCr, HSV, and Lab.FindingsDue to the vast development of Internet access and multimedia technology, it becomes very simple to hack and trace secret information. Using this steganography process in reversible data hiding (RDH) helps to prevent secret information.Originality/valueWe can divide the color space converted image into four sub-bands of images by using lifting wavelet transform. By selecting lower bands, the discrete cosine transform is computed for hiding two secret images into the cover image and again one of the transformed secret images is converted by using Arnold transform to get the encrypted/embedded/encoded image. To extract the Stego image, we can apply the revertible operation. For comparing the results, we can calculate PSNR, SSIM, and MSE values by applying the same process for all color spaces of YCbCr, HSV, and Lab. The experimental results give better performance when compared to all other spaces.