{"title":"Real-time fabrication analysis: a method for evaluating fabrication constraints of complex concrete shapes","authors":"Guy Austern, I. Capeluto, Y. Grobman","doi":"10.1080/00038628.2022.2107992","DOIUrl":null,"url":null,"abstract":"This paper presents a framework for an analysis method and computational tool, which evaluates the fabrication parameters of complex geometries. The suggested method predicts the feasibility, material use, and machining time required for fabricating the moulds for these geometries. It achieves this by interrogating geometric properties instead of the traditional machining simulations. Using the algorithms developed in this research, the method can provide real time evaluation of computer-controlled mould fabrication techniques such as cutting and assembling sheet materials, multi-axis milling of volumetric material, and robotic hot wire cutting. In the paper, we describe the mathematical basis of the suggested method. We demonstrate how the method provides real-time visual feedback for designers and allows them to adjust their design according to fabrication constraints in the early design stages. Using architectural case studies, we show how the analysis results provide precise cost estimates and help minimize fabrication resources in manual or automatic fabrication optimization processes.","PeriodicalId":47295,"journal":{"name":"Architectural Science Review","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architectural Science Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00038628.2022.2107992","RegionNum":3,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a framework for an analysis method and computational tool, which evaluates the fabrication parameters of complex geometries. The suggested method predicts the feasibility, material use, and machining time required for fabricating the moulds for these geometries. It achieves this by interrogating geometric properties instead of the traditional machining simulations. Using the algorithms developed in this research, the method can provide real time evaluation of computer-controlled mould fabrication techniques such as cutting and assembling sheet materials, multi-axis milling of volumetric material, and robotic hot wire cutting. In the paper, we describe the mathematical basis of the suggested method. We demonstrate how the method provides real-time visual feedback for designers and allows them to adjust their design according to fabrication constraints in the early design stages. Using architectural case studies, we show how the analysis results provide precise cost estimates and help minimize fabrication resources in manual or automatic fabrication optimization processes.
期刊介绍:
Founded at the University of Sydney in 1958 by Professor Henry Cowan to promote continued professional development, Architectural Science Review presents a balanced collection of papers on a wide range of topics. From its first issue over 50 years ago the journal documents the profession’s interest in environmental issues, covering topics such as thermal comfort, lighting, and sustainable architecture, contributing to this extensive field of knowledge by seeking papers from a broad geographical area. The journal is supported by an international editorial advisory board of the leading international academics and its reputation has increased globally with individual and institutional subscribers and contributors from around the world. As a result, Architectural Science Review continues to be recognised as not only one of the first, but the leading journal devoted to architectural science, technology and the built environment. Architectural Science Review publishes original research papers, shorter research notes, and abstracts of PhD dissertations and theses in all areas of architectural science including: -building science and technology -environmental sustainability -structures and materials -audio and acoustics -illumination -thermal systems -building physics -building services -building climatology -building economics -ergonomics -history and theory of architectural science -the social sciences of architecture