{"title":"CYT and SKT Metrics on Compact Semi-Simple Lie Groups","authors":"A. Fino, G. Grantcharov","doi":"10.3842/SIGMA.2023.028","DOIUrl":null,"url":null,"abstract":"A Hermitian metric on a complex manifold $(M, I)$ of complex dimension $n$ is called Calabi-Yau with torsion (CYT) or Bismut-Ricci flat, if the restricted holonomy of the associated Bismut connection is contained in ${\\rm SU}(n)$ and it is called strong K\\\"ahler with torsion (SKT) or pluriclosed if the associated fundamental form $F$ is $\\partial \\overline \\partial$-closed. In the paper we study the existence of left-invariant SKT and CYT metrics on compact semi-simple Lie groups endowed with a Samelson complex structure $I$. In particular, we show that if $I$ is determined by some maximal torus $T$ and $g$ is a left-invariant Hermitian metric, which is also invariant under the right action of the torus $T$, and is both CYT and SKT, then $g$ has to be Bismut flat.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.028","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
A Hermitian metric on a complex manifold $(M, I)$ of complex dimension $n$ is called Calabi-Yau with torsion (CYT) or Bismut-Ricci flat, if the restricted holonomy of the associated Bismut connection is contained in ${\rm SU}(n)$ and it is called strong K\"ahler with torsion (SKT) or pluriclosed if the associated fundamental form $F$ is $\partial \overline \partial$-closed. In the paper we study the existence of left-invariant SKT and CYT metrics on compact semi-simple Lie groups endowed with a Samelson complex structure $I$. In particular, we show that if $I$ is determined by some maximal torus $T$ and $g$ is a left-invariant Hermitian metric, which is also invariant under the right action of the torus $T$, and is both CYT and SKT, then $g$ has to be Bismut flat.
期刊介绍:
Scope
Geometrical methods in mathematical physics
Lie theory and differential equations
Classical and quantum integrable systems
Algebraic methods in dynamical systems and chaos
Exactly and quasi-exactly solvable models
Lie groups and algebras, representation theory
Orthogonal polynomials and special functions
Integrable probability and stochastic processes
Quantum algebras, quantum groups and their representations
Symplectic, Poisson and noncommutative geometry
Algebraic geometry and its applications
Quantum field theories and string/gauge theories
Statistical physics and condensed matter physics
Quantum gravity and cosmology.