Convergence of the self-dual U(1)-Yang–Mills–Higgs energies to the ( n − 2 ) $(n-2)$ -area functional

IF 3.1 1区 数学 Q1 MATHEMATICS
Davide Parise, Alessandro Pigati, Daniel Stern
{"title":"Convergence of the self-dual U(1)-Yang–Mills–Higgs energies to the \n \n \n (\n n\n −\n 2\n )\n \n $(n-2)$\n -area functional","authors":"Davide Parise,&nbsp;Alessandro Pigati,&nbsp;Daniel Stern","doi":"10.1002/cpa.22150","DOIUrl":null,"url":null,"abstract":"<p>Given a hermitian line bundle <math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>→</mo>\n <mi>M</mi>\n </mrow>\n <annotation>$L\\rightarrow M$</annotation>\n </semantics></math> on a closed Riemannian manifold <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>M</mi>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M^n,g)$</annotation>\n </semantics></math>, the self-dual Yang–Mills–Higgs energies are a natural family of functionals\n\n </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22150","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a hermitian line bundle L M $L\rightarrow M$ on a closed Riemannian manifold ( M n , g ) $(M^n,g)$ , the self-dual Yang–Mills–Higgs energies are a natural family of functionals

自对偶U(1)‐Yang-Mills-Higgs能量收敛到(n−2)$(n-2)$‐面积泛函
给定封闭黎曼流形上的厄米线束,自对偶的杨-密尔-希格斯能量是一个由截面和厄米连接∇与曲率组成的偶定义的自然泛函族。虽然这些泛函的临界点已经被规范理论界在二维中进行了很好的研究,但在[52]中表明,高维中的临界点收敛于(在适当的意义上)二维的极小子流形,与Allen-Cahn方程和极小超曲面之间的对应关系有很强的相似之处。在本文中,我们通过证明对(2π倍)余维面积的Γ‐收敛来补充这一思想:更准确地说,我们证明了一个合适的规范不变雅可比矩阵收敛于一个积分循环Γ,在与欧拉类对偶的同调类中,具有质量。对于这个同调类中的任何一个积分循环,我们也得到了一个恢复序列。最后,我们应用这些技术比较了Almgren-Pitts理论与Yang-Mills-Higgs框架的最小-最大面积值,表明前者的值总是为后者提供一个下界。作为一种成分,我们还建立了沿梯度流动的Huisken‐型单调性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信