{"title":"Convergence of the self-dual U(1)-Yang–Mills–Higgs energies to the \n \n \n (\n n\n −\n 2\n )\n \n $(n-2)$\n -area functional","authors":"Davide Parise, Alessandro Pigati, Daniel Stern","doi":"10.1002/cpa.22150","DOIUrl":null,"url":null,"abstract":"<p>Given a hermitian line bundle <math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mo>→</mo>\n <mi>M</mi>\n </mrow>\n <annotation>$L\\rightarrow M$</annotation>\n </semantics></math> on a closed Riemannian manifold <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>M</mi>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M^n,g)$</annotation>\n </semantics></math>, the self-dual Yang–Mills–Higgs energies are a natural family of functionals\n\n </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22150","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a hermitian line bundle on a closed Riemannian manifold , the self-dual Yang–Mills–Higgs energies are a natural family of functionals