{"title":"Cohort study design for illness-death processes with disease status under intermittent observation","authors":"Nathalie C. Moon, Leilei Zeng, R. Cook","doi":"10.1080/24709360.2019.1699341","DOIUrl":null,"url":null,"abstract":"Cohort studies are routinely conducted to learn about the incidence or progression rates of chronic diseases. The illness-death model offers a natural framework for joint consideration of non-fatal events in the semi-competing risks setting. We consider the design of prospective cohort studies where the goal is to estimate the effect of a marker on the risk of a non-fatal event which is subject to interval-censoring due to an intermittent observation scheme. The sample size is shown to depend on the effect of interest, the number of assessments, and the duration of follow-up. Minimum-cost designs are also developed to account for the different costs of recruitment and follow-up examination. We also consider the setting where the event status of individuals is observed subject to misclassification; the consequent need to increase the sample size to account for this error is illustrated through asymptotic calculations.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"3 1","pages":"178 - 200"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2019.1699341","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2019.1699341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Cohort studies are routinely conducted to learn about the incidence or progression rates of chronic diseases. The illness-death model offers a natural framework for joint consideration of non-fatal events in the semi-competing risks setting. We consider the design of prospective cohort studies where the goal is to estimate the effect of a marker on the risk of a non-fatal event which is subject to interval-censoring due to an intermittent observation scheme. The sample size is shown to depend on the effect of interest, the number of assessments, and the duration of follow-up. Minimum-cost designs are also developed to account for the different costs of recruitment and follow-up examination. We also consider the setting where the event status of individuals is observed subject to misclassification; the consequent need to increase the sample size to account for this error is illustrated through asymptotic calculations.