Study of the limiting behavior of delayed random sums under non-identical distributions setup and a Chover type LIL

IF 0.4 Q4 STATISTICS & PROBABILITY
M. Sreehari, Pingyan Chen
{"title":"Study of the limiting behavior of delayed random sums under non-identical distributions setup and a Chover type LIL","authors":"M. Sreehari, Pingyan Chen","doi":"10.1090/tpms/1103","DOIUrl":null,"url":null,"abstract":"We consider delayed sums of the type Sn+an − Sn where an is possibly a positive integer valued random variable satisfying certain conditions and Sn is the sum of independent random variables Xn with distribution functions Fn ∈ {G1, G2}. We study the limiting behavior of the delayed sums and prove laws of the iterated logarithm of Chover type. These results extend the results in Vasudeva and Divanji (1992) and Chen (2008).","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/tpms/1103","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider delayed sums of the type Sn+an − Sn where an is possibly a positive integer valued random variable satisfying certain conditions and Sn is the sum of independent random variables Xn with distribution functions Fn ∈ {G1, G2}. We study the limiting behavior of the delayed sums and prove laws of the iterated logarithm of Chover type. These results extend the results in Vasudeva and Divanji (1992) and Chen (2008).
非相同分布下延迟随机和的极限行为研究及Chover型LIL
我们考虑Sn+an−Sn类型的延迟和,其中an可能是满足一定条件的正整数随机变量,Sn是分布函数Fn∈{G1, G2}的独立随机变量Xn的和。研究了延迟和的极限性质,证明了Chover型迭代对数的一些规律。这些结果扩展了Vasudeva和Divanji(1992)和Chen(2008)的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信