Suchismita Das, S. Bose, G. K. Nayak, Sanjay Saxena
{"title":"Deep learning-based ensemble model for brain tumor segmentation using multi-parametric MR scans","authors":"Suchismita Das, S. Bose, G. K. Nayak, Sanjay Saxena","doi":"10.1515/comp-2022-0242","DOIUrl":null,"url":null,"abstract":"Abstract Glioma is a type of fast-growing brain tumor in which the shape, size, and location of the tumor vary from patient to patient. Manual extraction of a region of interest (tumor) with the help of a radiologist is a very difficult and time-consuming task. To overcome this problem, we proposed a fully automated deep learning-based ensemble method of brain tumor segmentation on four different 3D multimodal magnetic resonance imaging (MRI) scans. The segmentation is performed by three most efficient encoder–decoder deep models for segmentation and their results are measured through the well-known segmentation metrics. Then, a statistical analysis of the models was performed and an ensemble model is designed by considering the highest Matthews correlation coefficient using a particular MRI modality. There are two main contributions of the article: first the detailed comparison of the three models, and second proposing an ensemble model by combining the three models based on their segmentation accuracy. The model is evaluated using the brain tumor segmentation (BraTS) 2017 dataset and the F1 score of the final combined model is found to be 0.92, 0.95, 0.93, and 0.84 for whole tumor, core, enhancing tumor, and edema sub-tumor, respectively. Experimental results show that the model outperforms the state of the art.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0242","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
Abstract Glioma is a type of fast-growing brain tumor in which the shape, size, and location of the tumor vary from patient to patient. Manual extraction of a region of interest (tumor) with the help of a radiologist is a very difficult and time-consuming task. To overcome this problem, we proposed a fully automated deep learning-based ensemble method of brain tumor segmentation on four different 3D multimodal magnetic resonance imaging (MRI) scans. The segmentation is performed by three most efficient encoder–decoder deep models for segmentation and their results are measured through the well-known segmentation metrics. Then, a statistical analysis of the models was performed and an ensemble model is designed by considering the highest Matthews correlation coefficient using a particular MRI modality. There are two main contributions of the article: first the detailed comparison of the three models, and second proposing an ensemble model by combining the three models based on their segmentation accuracy. The model is evaluated using the brain tumor segmentation (BraTS) 2017 dataset and the F1 score of the final combined model is found to be 0.92, 0.95, 0.93, and 0.84 for whole tumor, core, enhancing tumor, and edema sub-tumor, respectively. Experimental results show that the model outperforms the state of the art.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.