Galerkin Finite Element Approximation for Semilinear Stochastic Time-Tempered Fractional Wave Equations with Multiplicative Gaussian Noise and Additive Fractional Gaussian Noise
{"title":"Galerkin Finite Element Approximation for Semilinear Stochastic Time-Tempered Fractional Wave Equations with Multiplicative Gaussian Noise and Additive Fractional Gaussian Noise","authors":"Yajing Li, Yejuan Wang, W. Deng, Daxin Nie","doi":"10.4208/nmtma.oa-2022-0013s","DOIUrl":null,"url":null,"abstract":". To model wave propagation in inhomogeneous media with frequency de-pendent power-law attenuation, it is needed to use the fractional powers of symmetric coercive elliptic operators in space and the Caputo tempered fractional derivative in time. The model studied in this paper is semilinear stochastic space-time fractional wave equations driven by infinite dimensional multiplicative Gaussian noise and additive fractional Gaussian noise, because of the potential fluctuations of the external sources. The purpose of this work is to discuss the Galerkin finite element approximation for the semilinear stochastic fractional wave equation. First, the space-time multiplicative Gaussian noise and additive fractional Gaussian noise are discretized, which results in a regularized stochastic fractional wave equation while introducing a modeling error in the mean-square sense. We further present a complete regularity theory for the regularized equation. A standard finite element approximation is used for the spatial operator, and a mean-square priori estimates for the modeling error and the approximation error to the solution of the regularized problem are established. Finally, numerical experiments are performed to confirm the theoretical analysis.","PeriodicalId":51146,"journal":{"name":"Numerical Mathematics-Theory Methods and Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Mathematics-Theory Methods and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/nmtma.oa-2022-0013s","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
. To model wave propagation in inhomogeneous media with frequency de-pendent power-law attenuation, it is needed to use the fractional powers of symmetric coercive elliptic operators in space and the Caputo tempered fractional derivative in time. The model studied in this paper is semilinear stochastic space-time fractional wave equations driven by infinite dimensional multiplicative Gaussian noise and additive fractional Gaussian noise, because of the potential fluctuations of the external sources. The purpose of this work is to discuss the Galerkin finite element approximation for the semilinear stochastic fractional wave equation. First, the space-time multiplicative Gaussian noise and additive fractional Gaussian noise are discretized, which results in a regularized stochastic fractional wave equation while introducing a modeling error in the mean-square sense. We further present a complete regularity theory for the regularized equation. A standard finite element approximation is used for the spatial operator, and a mean-square priori estimates for the modeling error and the approximation error to the solution of the regularized problem are established. Finally, numerical experiments are performed to confirm the theoretical analysis.
期刊介绍:
Numerical Mathematics: Theory, Methods and Applications (NM-TMA) publishes high-quality original research papers on the construction, analysis and application of numerical methods for solving scientific and engineering problems. Important research and expository papers devoted to the numerical solution of mathematical equations arising in all areas of science and technology are expected. The journal originates from the journal Numerical Mathematics: A Journal of Chinese Universities (English Edition). NM-TMA is a refereed international journal sponsored by Nanjing University and the Ministry of Education of China. As an international journal, NM-TMA is published in a timely fashion in printed and electronic forms.