Bifurcation Sets and Global Monodromies of Newton Nondegenerate Polynomials on Algebraic Sets

IF 1.1 2区 数学 Q1 MATHEMATICS
T. Nguyen, P. Pham, T. Pham
{"title":"Bifurcation Sets and Global Monodromies of Newton Nondegenerate Polynomials on Algebraic Sets","authors":"T. Nguyen, P. Pham, T. Pham","doi":"10.4171/prims/55-4-6","DOIUrl":null,"url":null,"abstract":"Let $S\\subset \\mathbb{C}^n$ be a non-singular algebraic set and $f \\colon \\mathbb{C}^n \\to \\mathbb{C}$ be a polynomial function. It is well-known that the restriction $f|_S \\colon S \\to \\mathbb{C}$ of $f$ on $S$ is a locally trivial fibration outside a finite set $B(f|_S) \\subset \\mathbb{C}.$ In this paper, we give an explicit description of a finite set $T_\\infty(f|_S) \\subset \\mathbb{C}$ such that $B(f|_S) \\subset K_0(f|_S) \\cup T_\\infty(f|_S),$ where $K_0(f|_S)$ denotes the set of critical values of the $f|_S.$ Furthermore, $T_\\infty(f|_S)$ is contained in the set of critical values of certain polynomial functions provided that the $f|_S$ is Newton non-degenerate at infinity. Using these facts, we show that if $\\{f_t\\}_{t \\in [0, 1]}$ is a family of polynomials such that the Newton polyhedron at infinity of $f_t$ is independent of $t$ and the $f_t|_S$ is Newton non-degenerate at infinity, then the global monodromies of the $f_t|_S$ are all isomorphic.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/55-4-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Let $S\subset \mathbb{C}^n$ be a non-singular algebraic set and $f \colon \mathbb{C}^n \to \mathbb{C}$ be a polynomial function. It is well-known that the restriction $f|_S \colon S \to \mathbb{C}$ of $f$ on $S$ is a locally trivial fibration outside a finite set $B(f|_S) \subset \mathbb{C}.$ In this paper, we give an explicit description of a finite set $T_\infty(f|_S) \subset \mathbb{C}$ such that $B(f|_S) \subset K_0(f|_S) \cup T_\infty(f|_S),$ where $K_0(f|_S)$ denotes the set of critical values of the $f|_S.$ Furthermore, $T_\infty(f|_S)$ is contained in the set of critical values of certain polynomial functions provided that the $f|_S$ is Newton non-degenerate at infinity. Using these facts, we show that if $\{f_t\}_{t \in [0, 1]}$ is a family of polynomials such that the Newton polyhedron at infinity of $f_t$ is independent of $t$ and the $f_t|_S$ is Newton non-degenerate at infinity, then the global monodromies of the $f_t|_S$ are all isomorphic.
代数集上牛顿非退化多项式的分支集和全局单调性
设$S\subet\mathbb{C}^n$为非奇异代数集,$f\colon\mathbb{C}^ n\to\mathbb}C$为多项式函数。众所周知,$f$对$S$的限制$f|_S\colonS\to\mathbb{C}$是有限集$B(f|_S)\subet\mathbb{C}$之外的局部平凡fibration。$本文给出了一个有限集$T_infty(f|_S)\subet \mathbb{C}$的显式描述,使得$B(f|_S)\subset K_0(f|.S)\cup T_infty此外,$T_infty(f|_S)$包含在某些多项式函数的临界值集合中,条件是$f|_S$在无穷大处是牛顿非退化的。利用这些事实,我们证明了如果$\{f_t\}_{t\in[0,1]}$是多项式族,使得$f_t$无穷远处的牛顿多面体独立于$t$,并且$f_t|_S$在无穷远处是牛顿非退化的,那么$f_t| _S$的全局单体都是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信