First-principles calculation of the parameters used by atomistic magnetic simulations

IF 2.9 Q3 CHEMISTRY, PHYSICAL
S. Mankovsky, H. Ebert
{"title":"First-principles calculation of the parameters used by atomistic magnetic simulations","authors":"S. Mankovsky, H. Ebert","doi":"10.1088/2516-1075/ac89c3","DOIUrl":null,"url":null,"abstract":"While the ground state of magnetic materials is in general well described on the basis of spin density functional theory (SDFT), the theoretical description of finite-temperature and non-equilibrium properties require an extension beyond the standard SDFT. Time-dependent SDFT (TD-SDFT), which give for example access to dynamical properties are computationally very demanding and can currently be hardly applied to complex solids. Here we focus on the alternative approach based on the combination of a parameterized phenomenological spin Hamiltonian and SDFT-based electronic structure calculations, giving access to the dynamical and finite-temperature properties for example via spin-dynamics simulations using the Landau–Lifshitz–Gilbert (LLG) equation or Monte Carlo simulations. We present an overview on the various methods to calculate the parameters of the various phenomenological Hamiltonians with an emphasis on the KKR Green function method as one of the most flexible band structure methods giving access to practically all relevant parameters. Concerning these, it is crucial to account for the spin–orbit coupling (SOC) by performing relativistic SDFT-based calculations as it plays a key role for magnetic anisotropy and chiral exchange interactions represented by the DMI parameters in the spin Hamiltonian. This concerns also the Gilbert damping parameters characterizing magnetization dissipation in the LLG equation, chiral multispin interaction parameters of the extended Heisenberg Hamiltonian, as well as spin–lattice interaction parameters describing the interplay of spin and lattice dynamics processes, for which an efficient computational scheme has been developed recently by the present authors.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ac89c3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 5

Abstract

While the ground state of magnetic materials is in general well described on the basis of spin density functional theory (SDFT), the theoretical description of finite-temperature and non-equilibrium properties require an extension beyond the standard SDFT. Time-dependent SDFT (TD-SDFT), which give for example access to dynamical properties are computationally very demanding and can currently be hardly applied to complex solids. Here we focus on the alternative approach based on the combination of a parameterized phenomenological spin Hamiltonian and SDFT-based electronic structure calculations, giving access to the dynamical and finite-temperature properties for example via spin-dynamics simulations using the Landau–Lifshitz–Gilbert (LLG) equation or Monte Carlo simulations. We present an overview on the various methods to calculate the parameters of the various phenomenological Hamiltonians with an emphasis on the KKR Green function method as one of the most flexible band structure methods giving access to practically all relevant parameters. Concerning these, it is crucial to account for the spin–orbit coupling (SOC) by performing relativistic SDFT-based calculations as it plays a key role for magnetic anisotropy and chiral exchange interactions represented by the DMI parameters in the spin Hamiltonian. This concerns also the Gilbert damping parameters characterizing magnetization dissipation in the LLG equation, chiral multispin interaction parameters of the extended Heisenberg Hamiltonian, as well as spin–lattice interaction parameters describing the interplay of spin and lattice dynamics processes, for which an efficient computational scheme has been developed recently by the present authors.
原子磁性模拟所用参数的第一性原理计算
虽然磁性材料的基态通常在自旋密度泛函理论(SDFT)的基础上得到很好的描述,但对有限温度和非平衡性质的理论描述需要在标准SDFT的基础上进行扩展。时间相关的SDFT (TD-SDFT),例如可以获得动力学性质,在计算上要求很高,目前很难应用于复杂固体。在这里,我们将重点放在基于参数化现象学自旋哈密顿量和基于sdft的电子结构计算相结合的替代方法上,例如通过使用Landau-Lifshitz-Gilbert (LLG)方程或蒙特卡罗模拟的自旋动力学模拟来获得动力学和有限温度特性。我们概述了计算各种现象学哈密顿量参数的各种方法,重点是KKR格林函数方法,它是最灵活的能带结构方法之一,可以访问几乎所有相关参数。因此,考虑自旋轨道耦合(SOC)对自旋哈密顿量中DMI参数表示的磁各向异性和手性交换相互作用起着关键作用,进行相对论性sdft计算是至关重要的。这也涉及表征LLG方程中磁化耗散的Gilbert阻尼参数,扩展海森堡哈密顿量的手性多自旋相互作用参数,以及描述自旋和晶格动力学过程相互作用的自旋-晶格相互作用参数,本文作者最近开发了一种有效的计算方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信