{"title":"Logarithmic Hardy-Littlewood-Sobolev inequality on pseudo-Einstein 3-manifolds and the logarithmic Robin mass","authors":"Ali Maalaoui","doi":"10.5565/publmat6722302","DOIUrl":null,"url":null,"abstract":"Given a three dimensional pseudo-Einstein CR manifold $(M,T^{1,0}M,\\theta)$, we study the existence of a contact structure conformal to $\\theta$ for which the logarithmic Hardy-Littlewood-Sobolev (LHLS) inequality holds. Our approach closely follows \\cite{Ok1} in the Riemannian setting. For this purpose, we introduce the notion of Robin mass as the constant term appearing in the expansion of the Green's function of the $P'$-operator. We show that the LHLS inequality appears when we study the variation of the total mass under conformal change. Then we exhibit an Aubin type result guaranteeing the existence of a minimizer for the total mass which yields the classical LHLS inequality.","PeriodicalId":54531,"journal":{"name":"Publicacions Matematiques","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publicacions Matematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6722302","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Given a three dimensional pseudo-Einstein CR manifold $(M,T^{1,0}M,\theta)$, we study the existence of a contact structure conformal to $\theta$ for which the logarithmic Hardy-Littlewood-Sobolev (LHLS) inequality holds. Our approach closely follows \cite{Ok1} in the Riemannian setting. For this purpose, we introduce the notion of Robin mass as the constant term appearing in the expansion of the Green's function of the $P'$-operator. We show that the LHLS inequality appears when we study the variation of the total mass under conformal change. Then we exhibit an Aubin type result guaranteeing the existence of a minimizer for the total mass which yields the classical LHLS inequality.
期刊介绍:
Publicacions Matemàtiques is a research mathematical journal published by the Department of Mathematics of the Universitat Autònoma de Barcelona since 1976 (before 1988 named Publicacions de la Secció de Matemàtiques, ISSN: 0210-2978 print, 2014-4369 online). Two issues, constituting a single volume, are published each year. The journal has a large circulation being received by more than two hundred libraries all over the world. It is indexed by Mathematical Reviews, Zentralblatt Math., Science Citation Index, SciSearch®, ISI Alerting Services, COMPUMATH Citation Index®, and it participates in the Euclid Project and JSTOR. Free access is provided to all published papers through the web page.
Publicacions Matemàtiques is a non-profit university journal which gives special attention to the authors during the whole editorial process. In 2019, the average time between the reception of a paper and its publication was twenty-two months, and the average time between the acceptance of a paper and its publication was fifteen months. The journal keeps on receiving a large number of submissions, so the authors should be warned that currently only articles with excellent reports can be accepted.