Logarithmic Hardy-Littlewood-Sobolev inequality on pseudo-Einstein 3-manifolds and the logarithmic Robin mass

Pub Date : 2019-11-17 DOI:10.5565/publmat6722302
Ali Maalaoui
{"title":"Logarithmic Hardy-Littlewood-Sobolev inequality on pseudo-Einstein 3-manifolds and the logarithmic Robin mass","authors":"Ali Maalaoui","doi":"10.5565/publmat6722302","DOIUrl":null,"url":null,"abstract":"Given a three dimensional pseudo-Einstein CR manifold $(M,T^{1,0}M,\\theta)$, we study the existence of a contact structure conformal to $\\theta$ for which the logarithmic Hardy-Littlewood-Sobolev (LHLS) inequality holds. Our approach closely follows \\cite{Ok1} in the Riemannian setting. For this purpose, we introduce the notion of Robin mass as the constant term appearing in the expansion of the Green's function of the $P'$-operator. We show that the LHLS inequality appears when we study the variation of the total mass under conformal change. Then we exhibit an Aubin type result guaranteeing the existence of a minimizer for the total mass which yields the classical LHLS inequality.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6722302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Given a three dimensional pseudo-Einstein CR manifold $(M,T^{1,0}M,\theta)$, we study the existence of a contact structure conformal to $\theta$ for which the logarithmic Hardy-Littlewood-Sobolev (LHLS) inequality holds. Our approach closely follows \cite{Ok1} in the Riemannian setting. For this purpose, we introduce the notion of Robin mass as the constant term appearing in the expansion of the Green's function of the $P'$-operator. We show that the LHLS inequality appears when we study the variation of the total mass under conformal change. Then we exhibit an Aubin type result guaranteeing the existence of a minimizer for the total mass which yields the classical LHLS inequality.
分享
查看原文
伪爱因斯坦3-流形上的对数Hardy-Littlewood-Sobolev不等式和对数Robin质量
给定一个三维拟Einstein CR流形$(M,T^{1,0}M,θ)$,我们研究了对数Hardy-Littlewood-Sobolev(LHLS)不等式成立的与$θ$共形的接触结构的存在性。我们的方法密切遵循黎曼环境中的引用{Ok1}。为此,我们引入了Robin质量的概念,作为$P'$-算子的Green函数展开中出现的常数项。我们证明了当我们研究保角变化下总质量的变化时,LHLS不等式出现了。然后,我们给出了一个Aubin型结果,保证了总质量的极小值的存在,这产生了经典的LHLS不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信