CFD-BASED SIMULATION OF THE FLOW AROUND A SHIP IN OBLIQUE MOTION AT LOW SPEED

IF 0.6 4区 工程技术 Q4 ENGINEERING, MARINE
J. Chen, Z. Zou, M. Chen, H. M. Wang
{"title":"CFD-BASED SIMULATION OF THE FLOW AROUND A SHIP IN OBLIQUE MOTION AT LOW SPEED","authors":"J. Chen, Z. Zou, M. Chen, H. M. Wang","doi":"10.5750/ijme.v158ia4.999","DOIUrl":null,"url":null,"abstract":"Ships tend to maneuver in oblique motion at low speed in situations such as turning in a harbor, or during offloading, dynamic positioning and mooring processes. The maneuverability criteria proposed by IMO are valid for ships sailing with relatively high speeds and small drift angles, which are inadequate to predict ship maneuverability in low speed condition. Hydrodynamic performance of ships maneuvering at low speed is needed to know for safety issues. A CFD-based method is employed to predict the flow around an Esso Osaka bare hull model in oblique motion at low speed, where the drift angle varies from 0° to 180°. The URANS method with the SST k-ω model is used for simulating ship flows with drift angles 0°~30° and 150°~180°, and DES method for simulating ship flows with drift angles 40°~150°. Verification and validation studies are conducted for drift angles of 0° and 70°. The vortex structures at typical drift angles of 0°, 30°, 50°, 70°, 90° and 180° are analyzed. The effects of drift angle and ship speed are demonstrated.","PeriodicalId":50313,"journal":{"name":"International Journal of Maritime Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Maritime Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5750/ijme.v158ia4.999","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

Ships tend to maneuver in oblique motion at low speed in situations such as turning in a harbor, or during offloading, dynamic positioning and mooring processes. The maneuverability criteria proposed by IMO are valid for ships sailing with relatively high speeds and small drift angles, which are inadequate to predict ship maneuverability in low speed condition. Hydrodynamic performance of ships maneuvering at low speed is needed to know for safety issues. A CFD-based method is employed to predict the flow around an Esso Osaka bare hull model in oblique motion at low speed, where the drift angle varies from 0° to 180°. The URANS method with the SST k-ω model is used for simulating ship flows with drift angles 0°~30° and 150°~180°, and DES method for simulating ship flows with drift angles 40°~150°. Verification and validation studies are conducted for drift angles of 0° and 70°. The vortex structures at typical drift angles of 0°, 30°, 50°, 70°, 90° and 180° are analyzed. The effects of drift angle and ship speed are demonstrated.
基于cfd的船舶低速倾斜运动绕流模拟
船舶在港口转弯、卸载、动态定位和系泊过程中,往往在低速下进行斜向运动。国际海事组织(IMO)提出的船舶操纵性准则仅适用于航速较高、偏航角较小的船舶,对于船舶低速状态下的操纵性预测不足。为了安全起见,需要了解船舶低速机动时的水动力性能。采用基于cfd的方法,对大坂埃索裸壳模型进行了低速倾斜运动、漂移角在0°~ 180°范围内的流动预测。采用基于SST k-ω模型的URANS方法模拟船舶漂移角为0°~30°和150°~180°的流动,采用DES方法模拟船舶漂移角为40°~150°的流动。对0°和70°的漂移角进行了验证和验证研究。分析了典型漂移角为0°、30°、50°、70°、90°和180°时的涡结构。分析了航速和偏航角对航速的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: The International Journal of Maritime Engineering (IJME) provides a forum for the reporting and discussion on technical and scientific issues associated with the design and construction of commercial marine vessels . Contributions in the form of papers and notes, together with discussion on published papers are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信