Bahadur efficiency of the maximum likelihood estimator and one-step estimator for quasi-arithmetic means of the Cauchy distribution

Pub Date : 2022-01-11 DOI:10.1007/s10463-021-00818-y
Yuichi Akaoka, Kazuki Okamura, Yoshiki Otobe
{"title":"Bahadur efficiency of the maximum likelihood estimator and one-step estimator for quasi-arithmetic means of the Cauchy distribution","authors":"Yuichi Akaoka,&nbsp;Kazuki Okamura,&nbsp;Yoshiki Otobe","doi":"10.1007/s10463-021-00818-y","DOIUrl":null,"url":null,"abstract":"<div><p>Some quasi-arithmetic means of random variables easily give unbiased strongly consistent closed-form estimators of the joint of the location and scale parameters of the Cauchy distribution. The one-step estimators of those quasi-arithmetic means of the Cauchy distribution are considered. We establish the Bahadur efficiency of the maximum likelihood estimator and the one-step estimators. We also show that the rate of the convergence of the mean-squared errors achieves the Cramér–Rao bound. Our results are also applicable to the circular Cauchy distribution .</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10463-021-00818-y.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-021-00818-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Some quasi-arithmetic means of random variables easily give unbiased strongly consistent closed-form estimators of the joint of the location and scale parameters of the Cauchy distribution. The one-step estimators of those quasi-arithmetic means of the Cauchy distribution are considered. We establish the Bahadur efficiency of the maximum likelihood estimator and the one-step estimators. We also show that the rate of the convergence of the mean-squared errors achieves the Cramér–Rao bound. Our results are also applicable to the circular Cauchy distribution .

分享
查看原文
Cauchy分布拟算术平均的最大似然估计和一步估计的Bahadur效率
一些随机变量的拟算术均值很容易给出柯西分布的位置参数和尺度参数联合的无偏强一致闭型估计。研究了柯西分布的拟算术均值的一步估计。建立了极大似然估计量和一步估计量的Bahadur效率。我们还证明了均方误差的收敛速度达到cram r - rao界。我们的结果也适用于圆形柯西分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信