FULLY OPTIMIZED MULTILAYER RADAR ABSORBER DESIGN USING MULTI-OBJECTIVE ABC ALGORITHM

IF 3.1 Q2 ENGINEERING, GEOLOGICAL
E. Yiğit, Huseyin Duysak
{"title":"FULLY OPTIMIZED MULTILAYER RADAR ABSORBER DESIGN USING MULTI-OBJECTIVE ABC ALGORITHM","authors":"E. Yiğit, Huseyin Duysak","doi":"10.26833/IJEG.743661","DOIUrl":null,"url":null,"abstract":"Main purpose of the design of multi-layer radar absorber (MRA) by means of metaheuristic optimization algorithms is to minimize both the total thickness (TT) of MRA and the maximum reflection coefficients for transverse electric (RTE) & transverse magnetic (RTM) polarizations at any oblique angle of incidence. For this purpose, sequence and thicknesses of layers of the MRA have been optimized by either single-objective approach based on combining all objectives or double-objective approach in which TT is evaluated separately from the reflection coefficients. In this study, triple-objective artificial bee colony (TO-ABC) algorithm integrated with Pareto front technique is proposed for fully optimized MRA design. Thus, both RTE, RTM and TT are simultaneously minimized by optimizing thickness, sequence and number of the layers. To demonstrate the superiority of TO-ABC, 3 types of MRAs operating at the frequency ranges of 2–18 GHz for each angle of incidence from 0⁰ to 60⁰ are optimized and compared with the literature. Furthermore, 4 different real MRAs are also optimized using real materials given in the literature. Thanks to the developed graphical user interface and TO-ABC algorithm, despite the limited number of materials, all possible solutions providing the specified parameters are easily achieved and successful MRA structures are designed.","PeriodicalId":42633,"journal":{"name":"International Journal of Engineering and Geosciences","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26833/IJEG.743661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2

Abstract

Main purpose of the design of multi-layer radar absorber (MRA) by means of metaheuristic optimization algorithms is to minimize both the total thickness (TT) of MRA and the maximum reflection coefficients for transverse electric (RTE) & transverse magnetic (RTM) polarizations at any oblique angle of incidence. For this purpose, sequence and thicknesses of layers of the MRA have been optimized by either single-objective approach based on combining all objectives or double-objective approach in which TT is evaluated separately from the reflection coefficients. In this study, triple-objective artificial bee colony (TO-ABC) algorithm integrated with Pareto front technique is proposed for fully optimized MRA design. Thus, both RTE, RTM and TT are simultaneously minimized by optimizing thickness, sequence and number of the layers. To demonstrate the superiority of TO-ABC, 3 types of MRAs operating at the frequency ranges of 2–18 GHz for each angle of incidence from 0⁰ to 60⁰ are optimized and compared with the literature. Furthermore, 4 different real MRAs are also optimized using real materials given in the literature. Thanks to the developed graphical user interface and TO-ABC algorithm, despite the limited number of materials, all possible solutions providing the specified parameters are easily achieved and successful MRA structures are designed.
基于多目标ABC算法的多层雷达吸波器全优化设计
利用元启发式优化算法设计多层雷达吸波器(MRA)的主要目的是使MRA的总厚度(TT)和横向电极化(RTE)和横向磁极化(RTM)在任意斜入射角下的最大反射系数最小。为此,MRA的层序和厚度通过结合所有目标的单目标方法或将TT与反射系数分开评估的双目标方法进行优化。本文提出了一种结合Pareto前沿技术的三目标人工蜂群(TO-ABC)算法,用于MRA的全优化设计。因此,通过优化层厚、层序和层数,可以同时最小化RTE、RTM和TT。为了证明To - abc的优越性,在0⁰到60⁰的每个入射角下,对3种工作在2-18 GHz频率范围内的mra进行了优化并与文献进行了比较。此外,还利用文献中给出的真实材料对4种不同的真实mra进行了优化。由于开发了图形用户界面和to - abc算法,尽管材料数量有限,但提供指定参数的所有可能解决方案都很容易实现,并设计了成功的MRA结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
12
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信