{"title":"Carleman estimate for complex second order elliptic operators with discontinuous Lipschitz coefficients","authors":"E. Francini, S. Vessella, J.-N. Wang","doi":"10.4171/jst/410","DOIUrl":null,"url":null,"abstract":"In this paper, we derive a local Carleman estimate for the complex second order elliptic operator with Lipschitz coefficients having jump discontinuities. Combing the result in [BL] and the arguments in [DcFLVW], we present an elementary method to derive the Carleman estimate under the optimal regularity assumption on the coefficients.","PeriodicalId":48789,"journal":{"name":"Journal of Spectral Theory","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spectral Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jst/410","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we derive a local Carleman estimate for the complex second order elliptic operator with Lipschitz coefficients having jump discontinuities. Combing the result in [BL] and the arguments in [DcFLVW], we present an elementary method to derive the Carleman estimate under the optimal regularity assumption on the coefficients.
期刊介绍:
The Journal of Spectral Theory is devoted to the publication of research articles that focus on spectral theory and its many areas of application. Articles of all lengths including surveys of parts of the subject are very welcome.
The following list includes several aspects of spectral theory and also fields which feature substantial applications of (or to) spectral theory.
Schrödinger operators, scattering theory and resonances;
eigenvalues: perturbation theory, asymptotics and inequalities;
quantum graphs, graph Laplacians;
pseudo-differential operators and semi-classical analysis;
random matrix theory;
the Anderson model and other random media;
non-self-adjoint matrices and operators, including Toeplitz operators;
spectral geometry, including manifolds and automorphic forms;
linear and nonlinear differential operators, especially those arising in geometry and physics;
orthogonal polynomials;
inverse problems.