Energy of a digraph with respect to a VDB topological index

IF 0.8 Q2 MATHEMATICS
Juan Monsalve, J. Rada
{"title":"Energy of a digraph with respect to a VDB topological index","authors":"Juan Monsalve, J. Rada","doi":"10.1515/spma-2022-0171","DOIUrl":null,"url":null,"abstract":"Abstract Let DD be a digraph with vertex set VV and arc set EE. For a vertex uu, the out-degree and in-degree of uu are denoted by du+{d}_{u}^{+} and du−{d}_{u}^{-}, respectively. A vertex-degree-based (VDB) topological index φ\\varphi is defined for DD as φ(D)=12∑uv∈Eφdu+,dv−,\\varphi (D)=\\frac{1}{2}\\sum _{uv\\in E}{\\varphi }_{{d}_{u}^{+},{d}_{v}^{-}}, where φi,j{\\varphi }_{i,j} is an appropriate function which satisfies φi,j=φj,i{\\varphi }_{i,j}={\\varphi }_{j,i}. In this work, we introduce the energy ℰφ(D){{\\mathcal{ {\\mathcal E} }}}_{\\varphi }(D) of a digraph DD with respect to a general VDB topological index φ\\varphi , and after comparing it with the energy of the underlying graph of its splitting digraph, we derive upper and lower bounds for ℰφ{{\\mathcal{ {\\mathcal E} }}}_{\\varphi } and characterize the digraphs which attain these bounds.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"10 1","pages":"417 - 426"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2022-0171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Let DD be a digraph with vertex set VV and arc set EE. For a vertex uu, the out-degree and in-degree of uu are denoted by du+{d}_{u}^{+} and du−{d}_{u}^{-}, respectively. A vertex-degree-based (VDB) topological index φ\varphi is defined for DD as φ(D)=12∑uv∈Eφdu+,dv−,\varphi (D)=\frac{1}{2}\sum _{uv\in E}{\varphi }_{{d}_{u}^{+},{d}_{v}^{-}}, where φi,j{\varphi }_{i,j} is an appropriate function which satisfies φi,j=φj,i{\varphi }_{i,j}={\varphi }_{j,i}. In this work, we introduce the energy ℰφ(D){{\mathcal{ {\mathcal E} }}}_{\varphi }(D) of a digraph DD with respect to a general VDB topological index φ\varphi , and after comparing it with the energy of the underlying graph of its splitting digraph, we derive upper and lower bounds for ℰφ{{\mathcal{ {\mathcal E} }}}_{\varphi } and characterize the digraphs which attain these bounds.
有向图相对于VDB拓扑索引的能量
摘要设DD为顶点集VV和弧集EE的有向图。对于顶点uu, uu的出度和入度用du+表示{d}_{你}^{+} du−{d}_{你}^{-},分别。基于顶点度(VDB)的拓扑索引φ\varphi 对于DD定义为φ(D)=12∑uv∈Eφdu+,dv−,\varphi (d)=\frac{1}{2}\sum _{紫外线\in e}{\varphi }_{{d}_{你}^{+},{d}_{v}^{-}},其中φi,j{\varphi }_{i,j} 是否有一个合适的函数满足φi,j=φj,i{\varphi }_{i,j}={\varphi }_{j,i}. 在这项工作中,我们引入了能量{{\mathcal{ {\mathcal E} }}}_{\varphi }有向图DD关于一般VDB拓扑索引φ的(D)\varphi ,并将其与它的分裂有向图的下图的能量进行比较,得到了它的上下界{{\mathcal{ {\mathcal E} }}}_{\varphi } 然后对达到这些界限的有向图进行表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信