Highly Directive Array Pattern Synthesis in Different phi Planes of a Large CCRAA Using Array Thinning Technique

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
S. Dubey, D. Mandal, A. K. Mishra
{"title":"Highly Directive Array Pattern Synthesis in Different phi Planes of a Large CCRAA Using Array Thinning Technique","authors":"S. Dubey, D. Mandal, A. K. Mishra","doi":"10.7716/aem.v11i2.1828","DOIUrl":null,"url":null,"abstract":"This paper presents a pattern synthesis method of a sizeable concentric circular ring array (CCRAA) of isotropic antennas using Evolutionary Algorithms. In this method, the array is thinned using the optimum set of binary excitations to achieve the desired highly directive pencil beam patterns with lower peak side lobe level(SLL). The half-power beam width and first null beam width is kept constant to obtain such highly directive beam patterns with lower peak SLL. This pattern is not synthesized to a particular azimuth plane rather in four different ' planes from entire azimuth planes. The isotropic elements are uniformly spaced in the concentric ring. The achieved set of optimum amplitudes are constructed with either 1 or 0 using Differential Evolutionary Algorithm(DE), Genetic Algorithm (GA), and Particle Swarm Optimization Algorithm (PSO). These excitations show the state of the elements. The elements are in “ON” state or in “OFF” state depending upon the excitation ‘1’ or ‘0’. It is also helpful to reduce the complexity of the feed networks. The excitations are also verified in the whole range (0o <phi<360o) of ' planes by selecting four phi planes arbitrarily. The outcomes established the superiority of GA and DE over PSO and also the effectiveness of the proposed method.","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v11i2.1828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a pattern synthesis method of a sizeable concentric circular ring array (CCRAA) of isotropic antennas using Evolutionary Algorithms. In this method, the array is thinned using the optimum set of binary excitations to achieve the desired highly directive pencil beam patterns with lower peak side lobe level(SLL). The half-power beam width and first null beam width is kept constant to obtain such highly directive beam patterns with lower peak SLL. This pattern is not synthesized to a particular azimuth plane rather in four different ' planes from entire azimuth planes. The isotropic elements are uniformly spaced in the concentric ring. The achieved set of optimum amplitudes are constructed with either 1 or 0 using Differential Evolutionary Algorithm(DE), Genetic Algorithm (GA), and Particle Swarm Optimization Algorithm (PSO). These excitations show the state of the elements. The elements are in “ON” state or in “OFF” state depending upon the excitation ‘1’ or ‘0’. It is also helpful to reduce the complexity of the feed networks. The excitations are also verified in the whole range (0o
利用阵列细化技术合成大型CCRAA不同phi平面的高定向阵列方向图
提出了一种基于进化算法的大尺寸同心圆环形天线阵方向图合成方法。在该方法中,使用最佳的二进制激励集对阵列进行减薄,以获得所需的具有较低峰值旁瓣电平(SLL)的高度指向性的铅笔束模式。保持半功率波束宽度和第一零波束宽度不变,以获得具有较低峰值SLL的高度指向性的波束图。这种模式不是合成到一个特定的方位角平面,而是从整个方位角平面合成到四个不同的方位角平面。各向同性元素在同心圆内均匀间隔。利用差分进化算法(DE)、遗传算法(GA)和粒子群优化算法(PSO),分别以1或0构建了所获得的最优振幅集。这些激发显示了元素的状态。元件处于“开”状态或“关”状态取决于激励“1”或“0”。这也有助于降低馈电网络的复杂性。通过任意选择4个phi平面,在整个平面(0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electromagnetics
Advanced Electromagnetics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.40
自引率
12.50%
发文量
33
审稿时长
10 weeks
期刊介绍: Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信