The completely delocalized region of the Erdős-Rényi graph

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
Johannes Alt, Raphael Ducatez, A. Knowles
{"title":"The completely delocalized region of the Erdős-Rényi graph","authors":"Johannes Alt, Raphael Ducatez, A. Knowles","doi":"10.1214/22-ecp450","DOIUrl":null,"url":null,"abstract":"We analyse the eigenvectors of the adjacency matrix of the Erdős-Rényi graph on N vertices with edge probability d N . We determine the full region of delocalization by determining the critical values of d log N down to which delocalization persists: for d log N > 1 log 4−1 all eigenvectors are completely delocalized, and for d log N > 1 all eigenvectors with eigenvalues away from the spectral edges are completely delocalized. Below these critical values, it is known [1, 3] that localized eigenvectors exist in the corresponding spectral regions.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ecp450","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

Abstract

We analyse the eigenvectors of the adjacency matrix of the Erdős-Rényi graph on N vertices with edge probability d N . We determine the full region of delocalization by determining the critical values of d log N down to which delocalization persists: for d log N > 1 log 4−1 all eigenvectors are completely delocalized, and for d log N > 1 all eigenvectors with eigenvalues away from the spectral edges are completely delocalized. Below these critical values, it is known [1, 3] that localized eigenvectors exist in the corresponding spectral regions.
Erdős-Rényi图的完全离域区域
我们分析了Erdős-Rényi图在N个顶点上的邻接矩阵的特征向量,边缘概率为d N。我们通过确定d log N的临界值来确定脱域的整个区域:对于d log N > 1 log 4−1,所有特征向量都是完全脱域的,对于d log N > 1,所有特征值远离谱边的特征向量都是完全脱域的。在这些临界值以下,我们知道[1,3]在相应的光谱区域存在局域特征向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信