A prediction-oriented optimal design for visualisation recommender systems

IF 0.7 Q3 STATISTICS & PROBABILITY
Yingyan Zeng, Xinwei Deng, Xiaoyu Chen, R. Jin
{"title":"A prediction-oriented optimal design for visualisation recommender systems","authors":"Yingyan Zeng, Xinwei Deng, Xiaoyu Chen, R. Jin","doi":"10.1080/24754269.2021.1905376","DOIUrl":null,"url":null,"abstract":"A good visualisation method can greatly enhance human-machine collaboration in target contexts. To aid the optimal selection of visualisations for users, visualisation recommender systems have been developed to provide the right visualisation method to the right person given specific contexts. A visualisation recommender system often relies on a user study to collect data and conduct analysis to provide personalised recommendations. However, a user study without employing an effective experimental design is typically expensive in terms of time and cost. In this work, we propose a prediction-oriented optimal design to determine the user-task allocation in the user study for the recommendation of visualisation methods. The proposed optimal design will not only encourage the learning of the similarity embedded in the recommendation responses (i.e., users' preference), but also improve the modelling accuracy of the similarities captured by the covariates of contexts (i.e., task attributes). A simulation study and a real-data case study are used to evaluate the proposed optimal design.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"5 1","pages":"134 - 148"},"PeriodicalIF":0.7000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2021.1905376","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2021.1905376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

A good visualisation method can greatly enhance human-machine collaboration in target contexts. To aid the optimal selection of visualisations for users, visualisation recommender systems have been developed to provide the right visualisation method to the right person given specific contexts. A visualisation recommender system often relies on a user study to collect data and conduct analysis to provide personalised recommendations. However, a user study without employing an effective experimental design is typically expensive in terms of time and cost. In this work, we propose a prediction-oriented optimal design to determine the user-task allocation in the user study for the recommendation of visualisation methods. The proposed optimal design will not only encourage the learning of the similarity embedded in the recommendation responses (i.e., users' preference), but also improve the modelling accuracy of the similarities captured by the covariates of contexts (i.e., task attributes). A simulation study and a real-data case study are used to evaluate the proposed optimal design.
面向预测的可视化推荐系统优化设计
一个好的可视化方法可以极大地增强目标环境中的人机协作。为了帮助用户进行最佳的可视化选择,可视化推荐系统已经被开发出来,以便在特定的环境中为合适的人提供正确的可视化方法。可视化推荐系统通常依赖于用户研究来收集数据并进行分析以提供个性化推荐。然而,没有采用有效的实验设计的用户研究在时间和成本方面通常是昂贵的。在这项工作中,我们提出了一个面向预测的优化设计,以确定用户研究中的用户任务分配,以推荐可视化方法。所提出的优化设计不仅鼓励对推荐响应中嵌入的相似性(即用户偏好)的学习,而且还提高了上下文协变量(即任务属性)捕获的相似性的建模精度。通过仿真研究和实际案例分析对所提出的优化设计进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信