Juan Zhao , Haibo Dai , Xiaolong Xu , Hao Yan , Zheng Zhang , Chunguo Li
{"title":"Security analysis and secured access design for networks of image remote sensing","authors":"Juan Zhao , Haibo Dai , Xiaolong Xu , Hao Yan , Zheng Zhang , Chunguo Li","doi":"10.1016/j.dcan.2023.05.004","DOIUrl":null,"url":null,"abstract":"<div><div>The secured access is studied in this paper for the network of the image remote sensing. Each sensor in this network encounters the information security when uploading information of the images wirelessly from the sensor to the central collection point. In order to enhance the sensing quality for the remote uploading, the passive reflection surface technique is employed. If one eavesdropper that exists nearby this sensor is keeping on accessing the same networks, he may receive the same image from this sensor. Our goal in this paper is to improve the SNR of legitimate collection unit while cut down the SNR of the eavesdropper as much as possible by adaptively adjust the uploading power from this sensor to enhance the security of the remote sensing images. In order to achieve this goal, the secured energy efficiency performance is theoretically analyzed with respect to the number of the passive reflection elements by calculating the instantaneous performance over the channel fading coefficients. Based on this theoretical result, the secured access is formulated as a mathematical optimization problem by adjusting the sensor uploading power as the unknown variables with the objective of the energy efficiency maximization while satisfying any required maximum data rate of the eavesdropper sensor. Finally, the analytical expression is theoretically derived for the optimum uploading power. Numerical simulations verify the design approach.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"11 1","pages":"Pages 136-144"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235286482300086X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The secured access is studied in this paper for the network of the image remote sensing. Each sensor in this network encounters the information security when uploading information of the images wirelessly from the sensor to the central collection point. In order to enhance the sensing quality for the remote uploading, the passive reflection surface technique is employed. If one eavesdropper that exists nearby this sensor is keeping on accessing the same networks, he may receive the same image from this sensor. Our goal in this paper is to improve the SNR of legitimate collection unit while cut down the SNR of the eavesdropper as much as possible by adaptively adjust the uploading power from this sensor to enhance the security of the remote sensing images. In order to achieve this goal, the secured energy efficiency performance is theoretically analyzed with respect to the number of the passive reflection elements by calculating the instantaneous performance over the channel fading coefficients. Based on this theoretical result, the secured access is formulated as a mathematical optimization problem by adjusting the sensor uploading power as the unknown variables with the objective of the energy efficiency maximization while satisfying any required maximum data rate of the eavesdropper sensor. Finally, the analytical expression is theoretically derived for the optimum uploading power. Numerical simulations verify the design approach.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.