{"title":"Wavelet Transform on Digital Rainbow Hologram based on Spectral Compression for Quality Enhancement in 3D Display Media","authors":"U. Darusalam, Panca Dewi Pamungkasari","doi":"10.7454/MST.V23I1.3107","DOIUrl":null,"url":null,"abstract":"A digital rainbow hologram (DRH) is a potential next-generation three-dimensional display media for the development of modern and smart electronics devices. It is one of the methods that can support the characteristic whereby a realistic display media occupies the space that the real object would have occupied. Since a rainbow hologram records a large amount of spatial or temporal frequency component from the object that represents the rainbow spectrum, a large amount of information needs to be decoded digitally. In this paper, to reconstruct a DRH, we propose a novel method based on the modulation of red, green, and blue spectral components of light by wavelet transform (WT) in the recording and reconstruction processes, which we digitally simulated in a computer using an algorithm. In the simulations, continuous WT (CWT) was based on Haar, Daubechies, Meyer, and Coiflet wavelets with a level set to be two. Based on the results of simulations using CWT, the optimum distance between object and hologram was 30 cm, and the maximum compression was 88.55%, which was achieved with Meyer wavelet. Moreover, optimal de-noising and optimal localization of spatial frequency component based on red, green, and blue spectral components were also achieved using the proposed method.","PeriodicalId":42980,"journal":{"name":"Makara Journal of Technology","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Makara Journal of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7454/MST.V23I1.3107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A digital rainbow hologram (DRH) is a potential next-generation three-dimensional display media for the development of modern and smart electronics devices. It is one of the methods that can support the characteristic whereby a realistic display media occupies the space that the real object would have occupied. Since a rainbow hologram records a large amount of spatial or temporal frequency component from the object that represents the rainbow spectrum, a large amount of information needs to be decoded digitally. In this paper, to reconstruct a DRH, we propose a novel method based on the modulation of red, green, and blue spectral components of light by wavelet transform (WT) in the recording and reconstruction processes, which we digitally simulated in a computer using an algorithm. In the simulations, continuous WT (CWT) was based on Haar, Daubechies, Meyer, and Coiflet wavelets with a level set to be two. Based on the results of simulations using CWT, the optimum distance between object and hologram was 30 cm, and the maximum compression was 88.55%, which was achieved with Meyer wavelet. Moreover, optimal de-noising and optimal localization of spatial frequency component based on red, green, and blue spectral components were also achieved using the proposed method.