{"title":"A closed graph theorem for hyperbolic iterated function systems","authors":"A. Mundey","doi":"10.4171/JFG/116","DOIUrl":null,"url":null,"abstract":"In this note we introduce a notion of a morphism between two hyperbolic iterated function systems. We prove that the graph of a morphism is the attractor of an iterated function system, giving a Closed Graph Theorem, and show how it can be used to approach the topological conjugacy problem for iterated function systems.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/JFG/116","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this note we introduce a notion of a morphism between two hyperbolic iterated function systems. We prove that the graph of a morphism is the attractor of an iterated function system, giving a Closed Graph Theorem, and show how it can be used to approach the topological conjugacy problem for iterated function systems.