Leonard Koren, Tomislav Stipančić, Andrija Ricko, Juraj Benić
{"title":"Context-Driven Method in Realization of Optimized Human-Robot Interaction","authors":"Leonard Koren, Tomislav Stipančić, Andrija Ricko, Juraj Benić","doi":"10.31803/tg-20220504100707","DOIUrl":null,"url":null,"abstract":"Perceptual uncertainty and environmental volatility are among the most enduring challenges in robotic research today. Contemporary robotic systems are usually designed to work in specific and controlled domains where a total number of variables is defined. Traditional solutions therefore often result in over-constrained interaction spaces or rigid system architectures where any unexpected change can result in system failure. The focus of this work is set on achieving a constant adaptation of the system to changes through interaction. A computational mechanism based on the entropy reduction method is integrated along with the three-component control model. This model is seen as a context-to-data interpreter used to provide context-aware reasoning to the technical system. The mechanism is using a decrease in interaction uncertainties when proofs are provided to the system. In this way, the robot can choose the right interaction strategy that resolves reasoning ambiguities most efficiently","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20220504100707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Perceptual uncertainty and environmental volatility are among the most enduring challenges in robotic research today. Contemporary robotic systems are usually designed to work in specific and controlled domains where a total number of variables is defined. Traditional solutions therefore often result in over-constrained interaction spaces or rigid system architectures where any unexpected change can result in system failure. The focus of this work is set on achieving a constant adaptation of the system to changes through interaction. A computational mechanism based on the entropy reduction method is integrated along with the three-component control model. This model is seen as a context-to-data interpreter used to provide context-aware reasoning to the technical system. The mechanism is using a decrease in interaction uncertainties when proofs are provided to the system. In this way, the robot can choose the right interaction strategy that resolves reasoning ambiguities most efficiently