{"title":"On a Generalization of Monge–Ampère Equations and Monge–Ampère Systems","authors":"M. Kawamata, K. Shibuya","doi":"10.3836/tjm/1502179374","DOIUrl":null,"url":null,"abstract":"We discuss Monge-Ampère equations from the view point of differential geometry. It is known that a Monge–Ampère equation corresponds to a special exterior differential system on a 1-jet space. In this paper, we generalize Monge–Ampère equations and prove that a (k+ 1)st order generalized Monge–Ampère equation corresponds to a special exterior differential system on a k-jet space. Then its solution naturally corresponds to an integral manifold of the corresponding exterior differential system. Moreover, we verify that the Korteweg-de Vries (KdV) equation and the Cauchy–Riemann equations are examples of our equation. 2010 Mathematics Subject Classification. Primary 58A15; Secondary 58A17.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We discuss Monge-Ampère equations from the view point of differential geometry. It is known that a Monge–Ampère equation corresponds to a special exterior differential system on a 1-jet space. In this paper, we generalize Monge–Ampère equations and prove that a (k+ 1)st order generalized Monge–Ampère equation corresponds to a special exterior differential system on a k-jet space. Then its solution naturally corresponds to an integral manifold of the corresponding exterior differential system. Moreover, we verify that the Korteweg-de Vries (KdV) equation and the Cauchy–Riemann equations are examples of our equation. 2010 Mathematics Subject Classification. Primary 58A15; Secondary 58A17.