On a Generalization of Monge–Ampère Equations and Monge–Ampère Systems

Pub Date : 2022-01-01 DOI:10.3836/tjm/1502179374
M. Kawamata, K. Shibuya
{"title":"On a Generalization of Monge–Ampère Equations and Monge–Ampère Systems","authors":"M. Kawamata, K. Shibuya","doi":"10.3836/tjm/1502179374","DOIUrl":null,"url":null,"abstract":"We discuss Monge-Ampère equations from the view point of differential geometry. It is known that a Monge–Ampère equation corresponds to a special exterior differential system on a 1-jet space. In this paper, we generalize Monge–Ampère equations and prove that a (k+ 1)st order generalized Monge–Ampère equation corresponds to a special exterior differential system on a k-jet space. Then its solution naturally corresponds to an integral manifold of the corresponding exterior differential system. Moreover, we verify that the Korteweg-de Vries (KdV) equation and the Cauchy–Riemann equations are examples of our equation. 2010 Mathematics Subject Classification. Primary 58A15; Secondary 58A17.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3836/tjm/1502179374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We discuss Monge-Ampère equations from the view point of differential geometry. It is known that a Monge–Ampère equation corresponds to a special exterior differential system on a 1-jet space. In this paper, we generalize Monge–Ampère equations and prove that a (k+ 1)st order generalized Monge–Ampère equation corresponds to a special exterior differential system on a k-jet space. Then its solution naturally corresponds to an integral manifold of the corresponding exterior differential system. Moreover, we verify that the Korteweg-de Vries (KdV) equation and the Cauchy–Riemann equations are examples of our equation. 2010 Mathematics Subject Classification. Primary 58A15; Secondary 58A17.
分享
查看原文
蒙日-安培方程及蒙日-安培系统的推广
本文从微分几何的角度讨论了蒙日-安培方程。已知monge - ampantere方程对应于一个单射流空间上的特殊外微分系统。本文推广了monge - amp方程,证明了k-射流空间上的(k+ 1)st阶广义monge - ampante方程对应于一个特殊的外微分系统。那么它的解自然对应于相应外部微分系统的积分流形。此外,我们验证了Korteweg-de Vries (KdV)方程和Cauchy-Riemann方程是我们的方程的例子。2010年数学学科分类。主要58 a15;二级第a17 58。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信