Kevin C. Thiel, Kristin M. Calhoun, Anthony E. Reinhart
{"title":"Forecast Applications of GLM Gridded Products: A Data Fusion Perspective","authors":"Kevin C. Thiel, Kristin M. Calhoun, Anthony E. Reinhart","doi":"10.1175/waf-d-23-0078.1","DOIUrl":null,"url":null,"abstract":"\nThe recently deployed GOES-R series Geostationary Lightning Mapper (GLM) provides forecasters with a new, rapidly-updating lightning data source to diagnose, forecast, and monitor atmospheric convection. Gridded GLM products have been developed to improve operational forecast applications, with variables including Flash Extent Density (FED), Minimum Flash Area (MFA), and Total Optical Energy (TOE). While these gridded products have been evaluated, there is a continual need to integrate these products with other datasets available to forecasters such as radar, satellite imagery, and ground-based lightning networks. Data from the Advanced Baseline Imager (ABI), Multi-Radar Multi-Sensor (MRMS) system, and one ground-based lightning network were compared against gridded GLM imagery from GOES-East and GOES-West in case studies of two supercell thunderstorms, along with a bulk study from 13 April through 31 May 2019, to provide further validation and applications of gridded GLM products from a data fusion perspective. Increasing FED and decreasing MFA corresponded with increasing thunderstorm intensity from the perspective of ABI infrared imagery and MRMS vertically integrated reflectivity products, and was apparent for more robust and severe convection. Flash areas were also observed to maximize between clean-IR brightness temperatures of 210 to 230 K, and isothermal reflectivity at −10 °C of 20 to 30 dBZ. TOE observations from both GLMs provided additional context of local GLM flash rates in each case study, due to their differing perspectives of convective updrafts.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-23-0078.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The recently deployed GOES-R series Geostationary Lightning Mapper (GLM) provides forecasters with a new, rapidly-updating lightning data source to diagnose, forecast, and monitor atmospheric convection. Gridded GLM products have been developed to improve operational forecast applications, with variables including Flash Extent Density (FED), Minimum Flash Area (MFA), and Total Optical Energy (TOE). While these gridded products have been evaluated, there is a continual need to integrate these products with other datasets available to forecasters such as radar, satellite imagery, and ground-based lightning networks. Data from the Advanced Baseline Imager (ABI), Multi-Radar Multi-Sensor (MRMS) system, and one ground-based lightning network were compared against gridded GLM imagery from GOES-East and GOES-West in case studies of two supercell thunderstorms, along with a bulk study from 13 April through 31 May 2019, to provide further validation and applications of gridded GLM products from a data fusion perspective. Increasing FED and decreasing MFA corresponded with increasing thunderstorm intensity from the perspective of ABI infrared imagery and MRMS vertically integrated reflectivity products, and was apparent for more robust and severe convection. Flash areas were also observed to maximize between clean-IR brightness temperatures of 210 to 230 K, and isothermal reflectivity at −10 °C of 20 to 30 dBZ. TOE observations from both GLMs provided additional context of local GLM flash rates in each case study, due to their differing perspectives of convective updrafts.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.