On Uniform K-Stability for Some Asymptotically log del Pezzo Surfaces

IF 1.1 2区 数学 Q1 MATHEMATICS
Kento Fujita
{"title":"On Uniform K-Stability for Some Asymptotically log del Pezzo Surfaces","authors":"Kento Fujita","doi":"10.4171/prims/58-1-6","DOIUrl":null,"url":null,"abstract":"Motivated by the problem for the existence of Kahler-Einstein edge metrics, Cheltsov and Rubinstein conjectured the K-polystability of asymptotically log Fano varieties with small cone angles when the anti-log-canonical divisors are not big. Cheltsov, Rubinstein and Zhang proved it affirmatively in dimension $2$ with irreducible boundaries except for the type $(\\operatorname{I.9B.}n)$ with $1\\leq n\\leq 6$. Unfortunately, recently, Fujita, Liu, Su\\ss, Zhang and Zhuang showed the non-K-polystability for some members of type $(\\operatorname{I.9B.}1)$ and for some members of type $(\\operatorname{I.9B.}2)$. In this article, we show that Cheltsov--Rubinstein's problem is true for all of the remaining cases. More precisely, we explicitly compute the delta-invariant for asymptotically log del Pezzo surfaces of type $(\\operatorname{I.9B.}n)$ for all $n\\geq 1$ with small cone angles. As a consequence, we finish Cheltsov--Rubinstein's problem in dimension $2$ with irreducible boundaries.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/58-1-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Motivated by the problem for the existence of Kahler-Einstein edge metrics, Cheltsov and Rubinstein conjectured the K-polystability of asymptotically log Fano varieties with small cone angles when the anti-log-canonical divisors are not big. Cheltsov, Rubinstein and Zhang proved it affirmatively in dimension $2$ with irreducible boundaries except for the type $(\operatorname{I.9B.}n)$ with $1\leq n\leq 6$. Unfortunately, recently, Fujita, Liu, Su\ss, Zhang and Zhuang showed the non-K-polystability for some members of type $(\operatorname{I.9B.}1)$ and for some members of type $(\operatorname{I.9B.}2)$. In this article, we show that Cheltsov--Rubinstein's problem is true for all of the remaining cases. More precisely, we explicitly compute the delta-invariant for asymptotically log del Pezzo surfaces of type $(\operatorname{I.9B.}n)$ for all $n\geq 1$ with small cone angles. As a consequence, we finish Cheltsov--Rubinstein's problem in dimension $2$ with irreducible boundaries.
一类渐近log del Pezzo曲面的一致K稳定性
Cheltsov和Rubinstein受到Kahler-Einstein边度量存在性问题的启发,在反对数正则因子不大的情况下,推测了具有小锥角的渐近对数Fano变型的k -多稳定性。Cheltsov, Rubinstein和Zhang在除$1\leq n\leq 6$型$(\operatorname{I.9B.}n)$外的不可约边界的维度$2$上肯定地证明了它。不幸的是,最近Fujita, Liu, Su \ss, Zhang和Zhuang证明了$(\operatorname{I.9B.}1)$型的一些成员和$(\operatorname{I.9B.}2)$型的一些成员的非k -polystability。在这篇文章中,我们证明了Cheltsov—Rubinstein问题对所有剩余的情况都是正确的。更精确地说,我们显式地计算了对于所有具有小锥角的$n\geq 1$型的渐近log del Pezzo曲面$(\operatorname{I.9B.}n)$的δ不变量。因此,我们完成了Cheltsov—Rubinstein的边界不可约维问题$2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信