Application Research on Pd-Co-Ti Catalyst for Purifying CO in Flue Gas of Hot-blast Stove in Steel Rolling Mill

Q3 Environmental Science
Jian-dong Cai, Zehui Yu, Junda He, Jian Li
{"title":"Application Research on Pd-Co-Ti Catalyst for Purifying CO in Flue Gas of Hot-blast Stove in Steel Rolling Mill","authors":"Jian-dong Cai, Zehui Yu, Junda He, Jian Li","doi":"10.13052/spee1048-5236.4048","DOIUrl":null,"url":null,"abstract":"The Pd-Co-Ti catalyst was successfully prepared by the method of impregnation-precipitation-ball milling. The structure and redox properties of Pd-Co-Ti catalyst was investigated by N22 desorption, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and H22-TPR. The results show that the Pd-Co-Ti catalyst has a large specific surface area and a rich pore structure, and there are Co33O44 and anatase TiO22 crystals in the catalyst. The synergistic effect of Pd and Co improves the redox ability of Pd-Co-Ti catalyst. The catalyst is used to treat CO in the flue gas of rolling mills. It runs for 168 hours at a space velocity of 30,000 cm33/(g⋅⋅h) and a temperature of 280∘∘C, and the CO removal rate is basically maintained at more than 90%. The ratio of inlet CO content and O22 content affects the catalyst CO removal efficiency. When the ratio is greater than 0.5, the CO removal efficiency has a downward trend. The results of this study are of great significance to the practical application of CO oxidation technology.","PeriodicalId":35712,"journal":{"name":"Strategic Planning for Energy and the Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strategic Planning for Energy and the Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/spee1048-5236.4048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

The Pd-Co-Ti catalyst was successfully prepared by the method of impregnation-precipitation-ball milling. The structure and redox properties of Pd-Co-Ti catalyst was investigated by N22 desorption, X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and H22-TPR. The results show that the Pd-Co-Ti catalyst has a large specific surface area and a rich pore structure, and there are Co33O44 and anatase TiO22 crystals in the catalyst. The synergistic effect of Pd and Co improves the redox ability of Pd-Co-Ti catalyst. The catalyst is used to treat CO in the flue gas of rolling mills. It runs for 168 hours at a space velocity of 30,000 cm33/(g⋅⋅h) and a temperature of 280∘∘C, and the CO removal rate is basically maintained at more than 90%. The ratio of inlet CO content and O22 content affects the catalyst CO removal efficiency. When the ratio is greater than 0.5, the CO removal efficiency has a downward trend. The results of this study are of great significance to the practical application of CO oxidation technology.
Pd-Co-Ti催化剂净化轧钢热风炉烟气中Co的应用研究
采用浸渍-沉淀-球磨法制备了钯钴钛催化剂。采用N22脱附、x射线粉末衍射(XRD)、透射电子显微镜(TEM)、x射线光电子能谱(XPS)和H22-TPR对Pd-Co-Ti催化剂的结构和氧化还原性能进行了研究。结果表明,Pd-Co-Ti催化剂具有较大的比表面积和丰富的孔隙结构,催化剂中存在Co33O44和锐钛矿TiO22晶体。Pd和Co的协同作用提高了Pd-Co- ti催化剂的氧化还原能力。该催化剂用于处理轧钢厂烟气中的一氧化碳。在30,000 cm33/(g⋅h)的空速和280°C的温度下运行168小时,CO去除率基本保持在90%以上。进口CO含量与O22含量的比值影响催化剂的CO脱除效率。当比值大于0.5时,CO去除率呈下降趋势。研究结果对CO氧化技术的实际应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Strategic Planning for Energy and the Environment
Strategic Planning for Energy and the Environment Environmental Science-Environmental Science (all)
CiteScore
1.50
自引率
0.00%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信