{"title":"Design of CuCs-doped Ag-based catalyst for ethylene epoxidation","authors":"Q. Wen, Haoxiang Xu, Yang Nan, Yuan Xie, D. Cheng","doi":"10.1063/1674-0068/cjcp2112246","DOIUrl":null,"url":null,"abstract":"Our recent theoretical studies have screened out CuCs-doped Ag-based promising catalysts for ethylene epoxidation [ACS Catal. 11, 3371 (2021)]. The theoretical results were based on surface modeling, while in the actual reaction process Ag catalysts are particle shaped. In this work, we combine density functional theory (DFT), Wulff construction theory, and micro kinetic analysis to study the catalytic performance of Ag catalysts at the particle model. It demonstrates that the CuCs-doped Ag catalysts are superior to pure Ag catalysts in terms of selectivity and activity, which is further proved by experimental validation. The characterization analysis finds that both Cu and Cs dopant promote particle growth as well as particle dispersion, resulting in a grain boundary-rich Ag particle. Besides, CuCs also facilitate electrophilic atomic oxygen formation on catalyst surface, which is benefitial for ethylene oxide formation and desorption. Our work provides a case study for catalyst design by combining theory and experiment.","PeriodicalId":10036,"journal":{"name":"Chinese Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/1674-0068/cjcp2112246","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Our recent theoretical studies have screened out CuCs-doped Ag-based promising catalysts for ethylene epoxidation [ACS Catal. 11, 3371 (2021)]. The theoretical results were based on surface modeling, while in the actual reaction process Ag catalysts are particle shaped. In this work, we combine density functional theory (DFT), Wulff construction theory, and micro kinetic analysis to study the catalytic performance of Ag catalysts at the particle model. It demonstrates that the CuCs-doped Ag catalysts are superior to pure Ag catalysts in terms of selectivity and activity, which is further proved by experimental validation. The characterization analysis finds that both Cu and Cs dopant promote particle growth as well as particle dispersion, resulting in a grain boundary-rich Ag particle. Besides, CuCs also facilitate electrophilic atomic oxygen formation on catalyst surface, which is benefitial for ethylene oxide formation and desorption. Our work provides a case study for catalyst design by combining theory and experiment.
期刊介绍:
Chinese Journal of Chemical Physics (CJCP) aims to bridge atomic and molecular level research in broad scope for disciplines in chemistry, physics, material science and life sciences, including the following:
Theoretical Methods, Algorithms, Statistical and Quantum Chemistry
Gas Phase Dynamics and Structure: Spectroscopy, Molecular Interactions, Scattering, Photochemistry
Condensed Phase Dynamics, Structure, and Thermodynamics: Spectroscopy, Reactions, and Relaxation Processes
Surfaces, Interfaces, Single Molecules, Materials and Nanosciences
Polymers, Biopolymers, and Complex Systems
Other related topics